1
|
Giotis ES, Laidlaw SM, Bidgood SR, Albrecht D, Burden JJ, Robey RC, Mercer J, Skinner MA. Modulation of Early Host Innate Immune Response by an Avipox Vaccine Virus' Lateral Body Protein. Biomedicines 2020; 8:E634. [PMID: 33352813 PMCID: PMC7766033 DOI: 10.3390/biomedicines8120634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
- School of Life Sciences, University of Essex, Colchester C04 3SQ, UK
| | - Stephen M. Laidlaw
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Susanna R. Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - David Albrecht
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Jemima J. Burden
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Rebecca C. Robey
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Michael A. Skinner
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| |
Collapse
|
2
|
Majid NN, Omar AR, Mariatulqabtiah AR. Negligible effect of chicken cytokine IL-12 integration into recombinant fowlpox viruses expressing avian influenza virus neuraminidase N1 on host cellular immune responses. J Gen Virol 2020; 101:772-777. [PMID: 32427095 PMCID: PMC7660237 DOI: 10.1099/jgv.0.001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
In comparison to the extensive characterization of haemagglutinin antibodies of avian influenza virus (AIV), the role of neuraminidase (NA) as an immunogen is less well understood. This study describes the construction and cellular responses of recombinant fowlpox viruses (rFWPV) strain FP9, co-expressing NA N1 gene of AIV A/Chicken/Malaysia/5858/2004, and chicken IL-12 gene. Our data shows that the N1 and IL-12 proteins were successfully expressed from the recombinants with 48 kD and 70 kD molecular weights, respectively. Upon inoculation into specific-pathogen-free (SPF) chickens at 105 p.f.u. ml-1, levels of CD3+/CD4+ and CD3+/CD8+ populations were higher in the wild-type fowlpox virus FP9 strain, compared to those of rFWPV-N1 and rFWPV-N1-IL-12 at weeks 2 and 5 time points. Furthermore, rFWPV-N1-IL-12 showed a suppressive effect on chicken body weight within 4 weeks after inoculation. We suggest that co-expression of N1 with or without IL-12 offers undesirable quality as a potential AIV vaccine candidate.
Collapse
Affiliation(s)
- Nadzreeq Nor Majid
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Santos HM, Tsai CY, Catulin GEM, Trangia KCG, Tayo LL, Liu HJ, Chuang KP. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Vet Microbiol 2020; 247:108779. [PMID: 32768225 DOI: 10.1016/j.vetmic.2020.108779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Pigeons (Columba livia) have been associated with humans for a long time now. They are raised for sport (pigeon race), exhibition (display of fancy breeds), food, and research. Most of the pigeons kept are Racing Homers, trained to compete in the pigeon race. Other breeds, such as Rollers, Nose Divers, Doneks are bred for their aerial abilities. Incorporation of a good preventive medicine program is one of the most critical factors in averting infectious diseases in pigeon flocks. This review summarizes the common bacterial, viral, and parasitic infections in pigeons. The different clinical signs, symptoms, diagnostic strategies, prevention, and treatments were described in this review. Current researches, molecular diagnostic assays, and treatment strategies such as vaccines and drug candidates were included. The information found in this review can provide insights for veterinarians and researchers studying pigeons to develop effective and efficient immunoprophylactic and diagnostic tools for pigeon diagnosis and therapeutics.
Collapse
Affiliation(s)
- Harvey M Santos
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Ching-Yi Tsai
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Gail Everette M Catulin
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Kim Chloe G Trangia
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kuo Pin Chuang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|