1
|
Liu C, Liu Z, Holmes J, Zhang L, Zhang L, Ding Y, Shu P, Wu Z, Dai H, Li Y, Shen D, Liu N, Li Q, Li X, Zhu D, Liu T, Liu W. Artificial general intelligence for radiation oncology. META-RADIOLOGY 2023; 1:100045. [PMID: 38344271 PMCID: PMC10857824 DOI: 10.1016/j.metrad.2023.100045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | | | - Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Peng Shu
- School of Computing, University of Georgia, USA
| | - Zihao Wu
- School of Computing, University of Georgia, USA
| | - Haixing Dai
- School of Computing, University of Georgia, USA
| | - Yiwei Li
- School of Computing, University of Georgia, USA
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, China
- Shanghai United Imaging Intelligence Co., Ltd, China
- Shanghai Clinical Research and Trial Center, China
| | - Ninghao Liu
- School of Computing, University of Georgia, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Xiang Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | | | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, USA
| |
Collapse
|
2
|
Fiagbedzi E, Hasford F, Tagoe SN. The influence of artificial intelligence on the work of the medical physicist in radiotherapy practice: a short review. BJR Open 2023; 5:20230003. [PMID: 37942499 PMCID: PMC10630976 DOI: 10.1259/bjro.20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 11/10/2023] Open
Abstract
There have been many applications and influences of Artificial intelligence (AI) in many sectors and its professionals, that of radiotherapy and the medical physicist is no different. AI and technological advances have necessitated changing roles of medical physicists due to the development of modernized technology with image-guided accessories for the radiotherapy treatment of cancer patients. Given the changing role of medical physicists in ensuring patient safety and optimal care, AI can reshape radiotherapy practice now and in some years to come. Medical physicists' roles in radiotherapy practice have evolved to meet technology for the management of better patient care in the age of modern radiotherapy. This short review provides an insight into the influence of AI on the changing role of medical physicists in each specific chain of the workflow in radiotherapy in which they are involved.
Collapse
Affiliation(s)
| | - Francis Hasford
- Department of Medical Physics, Accra-Ghana, University of Ghana, Accra, Ghana
| | - Samuel Nii Tagoe
- Department of Medical Physics, Accra-Ghana, University of Ghana, Accra, Ghana
| |
Collapse
|