1
|
Kim J, Lee S, Moodley Y, Yagnik L, Birnie D, Dwivedi G. The role of the host-microbiome and metabolomics in sarcoidosis. Am J Physiol Cell Physiol 2023; 325:C1336-C1353. [PMID: 37746695 DOI: 10.1152/ajpcell.00316.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Sarcoidosis is a complex inflammatory fibrotic disease that affects multiple organ systems. It is characterized by the infiltration of lymphocytes and mononuclear phagocytes, which form non-caseating granulomas in affected organs. The lungs and intrathoracic lymph nodes are the most commonly affected organs. The underlying cause of sarcoidosis is unknown, but it is believed to occur in genetically predisposed individuals who are exposed to pathogenic organisms, environmental contaminants, or self and non-self-antigens. Recent research has suggested that the microbiome may play a role in the development of respiratory conditions, including sarcoidosis. Additionally, metabolomic studies have identified potential biomarkers for monitoring sarcoidosis progression. This review will focus on recent microbiome and metabolomic findings in sarcoidosis, with the goal of shedding light on the pathogenesis and possible diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Junwoo Kim
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yuben Moodley
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Internal Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Lokesh Yagnik
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Internal Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - David Birnie
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Cardiology, Department of Medicine, University of Ottawa, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Cardiology, Department of Medicine, University of Ottawa, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Knudsen KS, Lehmann S, Nielsen R, Tangedal S, Paytuvi-Gallart A, Sanseverino W, Martinsen EMH, Hiemstra PS, Eagan TM. The lower airways microbiota and antimicrobial peptides indicate dysbiosis in sarcoidosis. MICROBIOME 2022; 10:175. [PMID: 36258251 PMCID: PMC9580159 DOI: 10.1186/s40168-022-01362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND The role of the pulmonary microbiome in sarcoidosis is unknown. The objectives of this study were the following: (1) examine whether the pulmonary fungal and bacterial microbiota differed in patients with sarcoidosis compared with controls; (2) examine whether there was an association between the microbiota and levels of the antimicrobial peptides (AMPs) in protected bronchoalveolar lavage (PBAL). METHODS Thirty-five sarcoidosis patients and 35 healthy controls underwent bronchoscopy and were sampled with oral wash (OW), protected BAL (PBAL), and left protected sterile brushes (LPSB). The fungal ITS1 region and the V3V4 region of the bacterial 16S rRNA gene were sequenced. Bioinformatic analyses were performed with QIIME 2. The AMPs secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 and hBD-2), were measured in PBAL by enzyme-linked immunosorbent assay (ELISA). RESULTS Aspergillus dominated the PBAL samples in sarcoidosis. Differences in bacterial taxonomy were minor. There was no significant difference in fungal alpha diversity between sarcoidosis and controls, but the bacterial alpha diversity in sarcoidosis was significantly lower in OW (p = 0.047) and PBAL (p = 0.03) compared with controls. The beta diversity for sarcoidosis compared with controls differed for both fungi and bacteria. AMP levels were significantly lower in sarcoidosis compared to controls (SLPI and hBD-1: p < 0.01). No significant correlations were found between alpha diversity and AMPs. CONCLUSIONS The pulmonary fungal and bacterial microbiota in sarcoidosis differed from in controls. Lower antimicrobial peptides levels were seen in sarcoidosis, indicating an interaction between the microbiota and the innate immune system. Whether this dysbiosis represents a pathogenic mechanism in sarcoidosis needs to be confirmed in experimental studies. Video Abstract.
Collapse
Affiliation(s)
| | - Sverre Lehmann
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Solveig Tangedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas M. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Khan AA, Singh H, Bilal M, Ashraf MT. Microbiota, probiotics and respiratory infections: the three musketeers can tip off potential management of COVID-19. Am J Transl Res 2021; 13:10977-10993. [PMID: 34786037 PMCID: PMC8581851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Rapid infectivity of SARS-CoV2 with recent viral variants is posing a challenge in the development of robust therapeutic strategies. On the other hand, microbiota is debated for its involvement in SARS-CoV2 infection with varied opinions. Although ample data about the role of microbiota and probiotics in respiratory viral infections are available, their role in COVID-19 is limited albeit emerging rapidly. The utilization of probiotics for the management of COVID-19 is still under investigation in many clinical trials. Existing information coupled with recent COVID-19 related studies can suggest various ways to use microbiota modulation and probiotics for managing this pandemic. Present article indicates the role of microbiota modulation and probiotics in respiratory infections. In addition, scattered evidence was gathered to understand the potential of microbiota and probiotics in the management of SARS-CoV2. Gut-airway microbiota connection is already apparent in respiratory tract viral infections, including SARS-CoV2. Though few clinical trials are evaluating microbiota and probiotics for COVID-19 management, the safety evaluation must be given more serious consideration because of the possibility of opportunistic infections among COVID-19 patients. Nevertheless, the information about microbiota modulation using probiotics and prebiotics can be helpful to manage this outbreak and this review presents different aspects of this idea.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research InstitutePune, Maharashtra 411026, India
| | - HariOm Singh
- Division of Molecular Biology, Indian Council of Medical Research-National AIDS Research InstitutePune, Maharashtra 411026, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian 223003, China
| | - Mohd Tashfeen Ashraf
- School of Biotechnology, Gautam Buddha UniversityGautam Budh Nagar, Greater Noida (UP), India
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a systemic disease characterized by granulomatous inflammation of unknown cause. There is extensive heterogeneity between patients with respect to the number and types of organs involved, disease course, and response to therapy. Recent research in the field has leveraged 'omics' techniques such as transcriptomics to identify important 'molecular profiles' in the disease. These tools may help in identifying clinically useful biomarkers and targets for therapy. RECENT FINDINGS Several studies have used gene expression profiling of predesignated lists or the entire genome to find genes and markers that differentiate sarcoidosis from healthy controls, but only a few have compared sarcoidosis patients based on disease phenotypes and organ involvement. The common gene pathways that have been repeatedly identified include those related to the interferon response, T-cell receptor signaling, and the major histocompatibility complex. SUMMARY While the molecular profiling studies to date offer the ability to compare sarcoidosis and health as well as across tissues, further longitudinal studies that include sarcoidosis patients with varying outcomes with respect to organ involvement and response to treatment are needed to identify clinically important phenotypes in the disease that can then be differentiated based on molecular features.
Collapse
Affiliation(s)
- Nicholas K. Arger
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Brian O’Connor
- National Jewish Health, Center for Genes, Environment, & Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Laura L. Koth
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|