1
|
Alenezi A, Mayya A, Alajmi M, Almutairi W, Alaradah D, Alhamad H. Application of the U-Net Deep Learning Model for Segmenting Single-Photon Emission Computed Tomography Myocardial Perfusion Images. Diagnostics (Basel) 2024; 14:2865. [PMID: 39767226 PMCID: PMC11675551 DOI: 10.3390/diagnostics14242865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial perfusion imaging (MPI) is a type of single-photon emission computed tomography (SPECT) used to evaluate patients with suspected or confirmed coronary artery disease (CAD). Detection and diagnosis of CAD are complex processes requiring precise and accurate image processing. Proper segmentation is critical for accurate diagnosis, but segmentation issues can pose significant challenges, leading to diagnostic difficulties. Machine learning (ML) algorithms have demonstrated superior performance in addressing segmentation problems. METHODS In this study, a deep learning (DL) algorithm, U-Net, was employed to enhance segmentation accuracy for image segmentation in MPI. Data were collected from 1100 patients who underwent MPI studies at Al-Jahra Hospital between 2015 and 2024. To train the U-Net model, 100 studies were segmented by nuclear medicine (NM) experts to create a ground truth (gold-standard coordinates). The dataset was divided into a training set (n = 100 images) and a validation set (n = 900 images). The performance of the U-Net model was evaluated using multiple cross-validation metrics, including accuracy, precision, intersection over union (IOU), recall, and F1 score. RESULT A dataset of 4560 images and corresponding masks was generated. Both holdout and k-fold (k = 5) validation strategies were applied, utilizing cross-entropy and Dice score as evaluation metrics. The best results were achieved with the holdout split and cross-entropy loss function, yielding a test accuracy of 98.9%, a test IOU of 89.6%, and a test Dice coefficient of 94%. The k-fold validation scenario provided a more balanced true positive and false positive rate. The U-Net segmentation results were comparable to those produced by expert nuclear medicine technologists, with no significant difference (p = 0.1). CONCLUSIONS The findings demonstrate that the U-Net model effectively addresses some segmentation challenges in MPI, facilitating improved diagnosis and analysis of mega data.
Collapse
Affiliation(s)
- Ahmad Alenezi
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
| | - Ali Mayya
- Computers and Automatic Control Engineering Department, Tishreen University, Latakia 2230, Syria
| | - Mahdi Alajmi
- Nuclear Medicine Department, Ministry of Health, Jahra Hospital, Al Jahra 03200, Kuwait;
| | - Wegdan Almutairi
- Faculty of Allied Health, Kuwait University, Kuwait City 31470, Kuwait; (W.A.); (D.A.)
| | - Dana Alaradah
- Faculty of Allied Health, Kuwait University, Kuwait City 31470, Kuwait; (W.A.); (D.A.)
| | - Hamad Alhamad
- Occupational Therapy Department, Kuwait University, Jabriya 31470, Kuwait;
| |
Collapse
|
2
|
Chang A, Wu X, Liu K. Deep learning from latent spatiotemporal information of the heart: Identifying advanced bioimaging markers from echocardiograms. BIOPHYSICS REVIEWS 2024; 5:011304. [PMID: 38559589 PMCID: PMC10978053 DOI: 10.1063/5.0176850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
A key strength of echocardiography lies in its integration of comprehensive spatiotemporal cardiac imaging data in real-time, to aid frontline or bedside patient risk stratification and management. Nonetheless, its acquisition, processing, and interpretation are known to all be subject to heterogeneity from its reliance on manual and subjective human tracings, which challenges workflow and protocol standardization and final interpretation accuracy. In the era of advanced computational power, utilization of machine learning algorithms for big data analytics in echocardiography promises reduction in cost, cognitive errors, and intra- and inter-observer variability. Novel spatiotemporal deep learning (DL) models allow the integration of temporal arm information based on unlabeled pixel echocardiographic data for convolution of an adaptive semantic spatiotemporal calibration to construct personalized 4D heart meshes, assess global and regional cardiac function, detect early valve pathology, and differentiate uncommon cardiovascular disorders. Meanwhile, data visualization on spatiotemporal DL prediction models helps extract latent temporal imaging features to develop advanced imaging biomarkers in early disease stages and advance our understanding of pathophysiology to support the development of personalized prevention or treatment strategies. Since portable echocardiograms have been increasingly used as point-of-care imaging tools to aid rural care delivery, the application of these new spatiotemporal DL techniques show the potentials in streamlining echocardiographic acquisition, processing, and data analysis to improve workflow standardization and efficiencies, and provide risk stratification and decision supporting tools in real-time, to prompt the building of new imaging diagnostic networks to enhance rural healthcare engagement.
Collapse
Affiliation(s)
- Amanda Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Xiaodong Wu
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kan Liu
- Division of Cardiology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
3
|
Soldera J, Corso LL, Rech MM, Ballotin VR, Bigarella LG, Tomé F, Moraes N, Balbinot RS, Rodriguez S, Brandão ABDM, Hochhegger B. Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study. World J Hepatol 2024; 16:193-210. [PMID: 38495288 PMCID: PMC10941741 DOI: 10.4254/wjh.v16.i2.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Liver transplant (LT) patients have become older and sicker. The rate of post-LT major adverse cardiovascular events (MACE) has increased, and this in turn raises 30-d post-LT mortality. Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients. AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort. METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center. We developed a predictive model for post-LT MACE (defined as a composite outcome of stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction) using the extreme gradient boosting (XGBoost) machine learning model. We addressed missing data (below 20%) for relevant variables using the k-nearest neighbor imputation method, calculating the mean from the ten nearest neighbors for each case. The modeling dataset included 83 features, encompassing patient and laboratory data, cirrhosis complications, and pre-LT cardiac assessments. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). We also employed Shapley additive explanations (SHAP) to interpret feature impacts. The dataset was split into training (75%) and testing (25%) sets. Calibration was evaluated using the Brier score. We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting. Scikit-learn and SHAP in Python 3 were used for all analyses. The supplementary material includes code for model development and a user-friendly online MACE prediction calculator. RESULTS Of the 537 included patients, 23 (4.46%) developed in-hospital MACE, with a mean age at transplantation of 52.9 years. The majority, 66.1%, were male. The XGBoost model achieved an impressive AUROC of 0.89 during the training stage. This model exhibited accuracy, precision, recall, and F1-score values of 0.84, 0.85, 0.80, and 0.79, respectively. Calibration, as assessed by the Brier score, indicated excellent model calibration with a score of 0.07. Furthermore, SHAP values highlighted the significance of certain variables in predicting postoperative MACE, with negative noninvasive cardiac stress testing, use of nonselective beta-blockers, direct bilirubin levels, blood type O, and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level. These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE, making it a valuable tool for clinical practice. CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE, using both cardiovascular and hepatic variables. The model demonstrated impressive performance, aligning with literature findings, and exhibited excellent calibration. Notably, our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data, reinforcing the model's value as a reliable tool for predicting post-LT MACE in clinical practice.
Collapse
Affiliation(s)
- Jonathan Soldera
- Post Graduate Program at Acute Medicine and Gastroenterology, University of South Wales, Cardiff CF37 1DL, United Kingdom
- Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
| | - Leandro Luis Corso
- Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Matheus Machado Rech
- School of Medicine, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | | | | | - Fernanda Tomé
- Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Nathalia Moraes
- Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | | | - Santiago Rodriguez
- Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Ajacio Bandeira de Mello Brandão
- Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Bruno Hochhegger
- Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| |
Collapse
|
4
|
Zhang YJ, Luo Z, Sun Y, Liu J, Chen Z. From beasts to bytes: Revolutionizing zoological research with artificial intelligence. Zool Res 2023; 44:1115-1131. [PMID: 37933101 PMCID: PMC10802096 DOI: 10.24272/j.issn.2095-8137.2023.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Since the late 2010s, Artificial Intelligence (AI) including machine learning, boosted through deep learning, has boomed as a vital tool to leverage computer vision, natural language processing and speech recognition in revolutionizing zoological research. This review provides an overview of the primary tasks, core models, datasets, and applications of AI in zoological research, including animal classification, resource conservation, behavior, development, genetics and evolution, breeding and health, disease models, and paleontology. Additionally, we explore the challenges and future directions of integrating AI into this field. Based on numerous case studies, this review outlines various avenues for incorporating AI into zoological research and underscores its potential to enhance our understanding of the intricate relationships that exist within the animal kingdom. As we build a bridge between beast and byte realms, this review serves as a resource for envisioning novel AI applications in zoological research that have not yet been explored.
Collapse
Affiliation(s)
- Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects
- Chongqing Key Laboratory of Animal Biology
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zeyu Luo
- Chongqing Key Laboratory of Vector Insects
- Chongqing Key Laboratory of Animal Biology
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yawen Sun
- Chongqing Key Laboratory of Vector Insects
- Chongqing Key Laboratory of Animal Biology
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junhao Liu
- Chongqing Key Laboratory of Vector Insects
- Chongqing Key Laboratory of Animal Biology
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zongqing Chen
- School of Mathematical Sciences
- National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China. E-mail:
| |
Collapse
|
5
|
Lejeune A, Le Glaz A, Perron PA, Sebti J, Baca-Garcia E, Walter M, Lemey C, Berrouiguet S. Artificial intelligence and suicide prevention: a systematic review. Eur Psychiatry 2022; 65:1-22. [PMID: 35166203 PMCID: PMC8988272 DOI: 10.1192/j.eurpsy.2022.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Suicide is one of the main preventable causes of death. Artificial intelligence (AI) could improve methods for assessing suicide risk. The objective of this review is to assess the potential of AI in identifying patients who are at risk of attempting suicide. Methods A systematic review of the literature was conducted on PubMed, EMBASE, and SCOPUS databases, using relevant keywords. Results Thanks to this research, 296 studies were identified. Seventeen studies, published between 2014 and 2020 and matching inclusion criteria, were selected as relevant. Included studies aimed at predicting individual suicide risk or identifying at-risk individuals in a specific population. The AI performance was overall good, although variable across different algorithms and application settings. Conclusions AI appears to have a high potential for identifying patients at risk of suicide. The precise use of these algorithms in clinical situations, as well as the ethical issues it raises, remain to be clarified.
Collapse
Affiliation(s)
- Alban Lejeune
- URCI Mental Health Department, Brest Medical University Hospital, Brest, France
| | - Aziliz Le Glaz
- URCI Mental Health Department, Brest Medical University Hospital, Brest, France
| | | | - Johan Sebti
- Mental Health Department, French Polynesia Hospital, FFC3+H9G, Pirae, French Polynesia
| | | | - Michel Walter
- URCI Mental Health Department, Brest Medical University Hospital, Brest, France
- EA 7479 SPURBO, Université de Bretagne Occidentale, Brest, France
| | - Christophe Lemey
- URCI Mental Health Department, Brest Medical University Hospital, Brest, France
- EA 7479 SPURBO, Université de Bretagne Occidentale, Brest, France
- SPURBO, IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France
| | - Sofian Berrouiguet
- URCI Mental Health Department, Brest Medical University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Brest, France
| |
Collapse
|
6
|
Barakat MT, Girotra M, Banerjee S. Initial application of deep learning to borescope detection of endoscope working channel damage and residue. Endosc Int Open 2022; 10:E112-E118. [PMID: 35047341 PMCID: PMC8759945 DOI: 10.1055/a-1591-0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background and study aims Outbreaks of endoscopy-related infections have prompted evaluation for potential contributing factors. We and others have demonstrated the utility of borescope inspection of endoscope working channels to identify occult damage that may impact the adequacy of endoscope reprocessing. The time investment and training necessary for borescope inspection have been cited as barriers preventing implementation. We investigated the utility of artificial intelligence (AI) for streamlining and enhancing the value of borescope inspection of endoscope working channels. Methods We applied a deep learning AI approach to borescope inspection videos of the working channels of 20 endoscopes in use at our academic institution. We evaluated the sensitivity, accuracy, and reliability of this software for detection of endoscope working channel findings. Results Overall sensitivity for AI-based detection of borescope inspection findings identified by gold standard endoscopist inspection was 91.4 %. Labels were accurate for 67 % of these working channel findings and accuracy varied by endoscope segment. Read-to-read variability was noted to be minimal, with test-retest correlation value of 0.986. Endoscope type did not predict accuracy of the AI system ( P = 0.26). Conclusions Harnessing the power of AI for detection of endoscope working channel damage and residue could enable sterile processing department technicians to feasibly assess endoscopes for working channel damage and perform endoscope reprocessing surveillance. Endoscopes that accumulate an unacceptable level of damage may be flagged for further manual evaluation and consideration for manufacturer evaluation/repair.
Collapse
Affiliation(s)
- Monique T Barakat
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| | - Mohit Girotra
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| | - Subhas Banerjee
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
7
|
Kulkarni P, Mahadevappa M, Chilakamarri S. The Emergence of Artificial Intelligence in Cardiology: Current and Future Applications. Curr Cardiol Rev 2022; 18:e191121198124. [PMID: 34802407 PMCID: PMC9615212 DOI: 10.2174/1573403x17666211119102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Artificial intelligence technology is emerging as a promising entity in cardiovascular medicine, potentially improving diagnosis and patient care. In this article, we review the literature on artificial intelligence and its utility in cardiology. We provide a detailed description of concepts of artificial intelligence tools like machine learning, deep learning, and cognitive computing. This review discusses the current evidence, application, prospects, and limitations of artificial intelligence in cardiology.
Collapse
Affiliation(s)
- Prashanth Kulkarni
- Department of Cardiology, Kindle Clinics, Gachibowli, Hyderabad, 500032 India
| | | | | |
Collapse
|
8
|
de Souza Filho EM, Fernandes FDA, Wiefels C, de Carvalho LND, Dos Santos TF, Dos Santos AASMD, Mesquita ET, Seixas FL, Chow BJW, Mesquita CT, Gismondi RA. Machine Learning Algorithms to Distinguish Myocardial Perfusion SPECT Polar Maps. Front Cardiovasc Med 2021; 8:741667. [PMID: 34901207 PMCID: PMC8660123 DOI: 10.3389/fcvm.2021.741667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Myocardial perfusion imaging (MPI) plays an important role in patients with suspected and documented coronary artery disease (CAD). Machine Learning (ML) algorithms have been developed for many medical applications with excellent performance. This study used ML algorithms to discern normal and abnormal gated Single Photon Emission Computed Tomography (SPECT) images. We analyzed one thousand and seven polar maps from a database of patients referred to a university hospital for clinically indicated MPI between January 2016 and December 2018. These studies were reported and evaluated by two different expert readers. The image features were extracted from a specific type of polar map segmentation based on horizontal and vertical slices. A senior expert reading was the comparator (gold standard). We used cross-validation to divide the dataset into training and testing subsets, using data augmentation in the training set, and evaluated 04 ML models. All models had accuracy >90% and area under the receiver operating characteristics curve (AUC) >0.80 except for Adaptive Boosting (AUC = 0.77), while all precision and sensitivity obtained were >96 and 92%, respectively. Random Forest had the best performance (AUC: 0.853; accuracy: 0,938; precision: 0.968; sensitivity: 0.963). ML algorithms performed very well in image classification. These models were capable of distinguishing polar maps remarkably into normal and abnormal.
Collapse
Affiliation(s)
- Erito Marques de Souza Filho
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Department of Languages and Technologies, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando de Amorim Fernandes
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Department of Nuclear Medicine, Hospital Universitário Antônio Pedro/EBSERH, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Christiane Wiefels
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Department of Cardiac Image, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Tadeu Francisco Dos Santos
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Evandro Tinoco Mesquita
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávio Luiz Seixas
- Institute of Computing, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Benjamin J W Chow
- Department of Cardiac Image, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Claudio Tinoco Mesquita
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Department of Nuclear Medicine, Hospital Pró-Cardíaco, Americas Serviços Medicos, Rio de Janeiro, Brazil
| | - Ronaldo Altenburg Gismondi
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
de Souza Filho EM, Fernandes FDA, Portela MGR, Newlands PH, de Carvalho LND, Dos Santos TF, Dos Santos AASMD, Mesquita ET, Seixas FL, Mesquita CT, Gismondi RA. Machine Learning Algorithms to Detect Sex in Myocardial Perfusion Imaging. Front Cardiovasc Med 2021; 8:741679. [PMID: 34778403 PMCID: PMC8585770 DOI: 10.3389/fcvm.2021.741679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial perfusion imaging (MPI) is an essential tool used to diagnose and manage patients with suspected or known coronary artery disease. Additionally, the General Data Protection Regulation (GDPR) represents a milestone about individuals' data security concerns. On the other hand, Machine Learning (ML) has had several applications in the most diverse knowledge areas. It is conceived as a technology with huge potential to revolutionize health care. In this context, we developed ML models to evaluate their ability to distinguish an individual's sex from MPI assessment. We used 260 polar maps (140 men/120 women) to train ML algorithms from a database of patients referred to a university hospital for clinically indicated MPI from January 2016 to December 2018. We tested 07 different ML models, namely, Classification and Regression Tree (CART), Naive Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Adaptive Boosting (AB), Random Forests (RF) and, Gradient Boosting (GB). We used a cross-validation strategy. Our work demonstrated that ML algorithms could perform well in assessing the sex of patients undergoing myocardial scintigraphy exams. All the models had accuracy greater than 82%. However, only SVM achieved 90%. KNN, RF, AB, GB had, respectively, 88, 86, 85, 83%. Accuracy standard deviation was lower in KNN, AB, and RF (0.06). SVM and RF had had the best area under the receiver operating characteristic curve (0.93), followed by GB (0.92), KNN (0.91), AB, and NB (0.9). SVM and AB achieved the best precision. Our results bring some challenges regarding the autonomy of patients who wish to keep sex information confidential and certainly add greater complexity to the debate about what data should be considered sensitive to the light of the GDPR.
Collapse
Affiliation(s)
- Erito Marques de Souza Filho
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Department of Languages and Technologies, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando de Amorim Fernandes
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Department of Nuclear Medicine, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | - Tadeu Francisco Dos Santos
- Department of Nuclear Medicine, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Evandro Tinoco Mesquita
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil
| | - Flávio Luiz Seixas
- Institute of Computing, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio Tinoco Mesquita
- Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil
| | | |
Collapse
|
10
|
Mesquita ET, Mendes AP, Moura L, Figueiredo Neto JAD, Marcondes-Braga FG, Bacal F, Moreira MDCV, Clausell NO. The Challenges of Heart Failure Yesterday, Today and Tomorrow and the 20 Years of DEIC. Arq Bras Cardiol 2021; 116:359-362. [PMID: 33656090 PMCID: PMC7909977 DOI: 10.36660/abc.20201200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Ana Paula Mendes
- Universidade Federal Fluminense Hospital Universitário Antônio Pedro, Niterói, RJ - Brasil
| | - Lidia Moura
- Pontifícia Universidade Católica do Paraná, Curitiba, PR - Brasil
| | | | - Fabiana G Marcondes-Braga
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP - Brasil
| | - Fernando Bacal
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP - Brasil
| | | | | |
Collapse
|
11
|
What Can COVID-19 Teach Us about Using AI in Pandemics? Healthcare (Basel) 2020; 8:healthcare8040527. [PMID: 33271960 PMCID: PMC7711608 DOI: 10.3390/healthcare8040527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
The COVID-19 pandemic put significant strain on societies and their resources, with the healthcare system and workers being particularly affected. Artificial Intelligence (AI) offers the unique possibility of improving the response to a pandemic as it emerges and evolves. Here, we utilize the WHO framework of a pandemic evolution to analyze the various AI applications. Specifically, we analyzed AI from the perspective of all five domains of the WHO pandemic response. To effectively review the current scattered literature, we organized a sample of relevant literature from various professional and popular resources. The article concludes with a consideration of AI’s weaknesses as key factors affecting AI in future pandemic preparedness and response.
Collapse
|
12
|
Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology. Curr Cardiol Rep 2020; 22:161. [PMID: 33037949 DOI: 10.1007/s11886-020-01416-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Electrocardiography (ECG) and echocardiography are the most widely used diagnostic tools in clinical cardiology. This review focuses on recent advancements in applying machine learning (ML) in ECG and echocardiography and potential synergistic ML integration of ECG and echocardiography. RECENT FINDINGS ML algorithms have been used in ECG for technical quality assurance, arrhythmia identification, and prognostic predictions, and in echocardiography to recognize image views, quantify measurements, and identify pathologic patterns. Synergistic application of ML in ECG and echocardiograph has demonstrated the potential to optimize therapeutic response, improve risk stratification, and generate new disease classification. There is mounting evidence that ML potentially outperforms in disease diagnoses and outcome prediction with ECG and echocardiography when compared with trained healthcare professionals. The applications of ML in ECG and echocardiography are playing increasingly greater roles in medical research and clinical practice, particularly for their contributions to developing novel diagnostic/prognostic prediction models. The automation in data acquisition, processing, and interpretation help streamline the workflows of ECG and echocardiography in contemporary cardiology practice.
Collapse
|
13
|
Böttcher B, Beller E, Busse A, Cantré D, Yücel S, Öner A, Ince H, Weber MA, Meinel FG. Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm. Int J Cardiovasc Imaging 2020; 36:2239-2247. [PMID: 32677023 PMCID: PMC7568707 DOI: 10.1007/s10554-020-01935-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
To investigate the performance of a deep learning-based algorithm for fully automated quantification of left ventricular (LV) volumes and function in cardiac MRI. We retrospectively analysed MR examinations of 50 patients (74% men, median age 57 years). The most common indications were known or suspected ischemic heart disease, cardiomyopathies or myocarditis. Fully automated analysis of LV volumes and function was performed using a deep learning-based algorithm. The analysis was subsequently corrected by a senior cardiovascular radiologist. Manual volumetric analysis was performed by two radiology trainees. Volumetric results were compared using Bland–Altman statistics and intra-class correlation coefficient. The frequency of clinically relevant differences was analysed using re-classification rates. The fully automated volumetric analysis was completed in a median of 8 s. With expert review and corrections, the analysis required a median of 110 s. Median time required for manual analysis was 3.5 min for a cardiovascular imaging fellow and 9 min for a radiology resident (p < 0.0001 for all comparisons). The correlation between fully automated results and expert-corrected results was very strong with intra-class correlation coefficients of 0.998 for end-diastolic volume, 0.997 for end-systolic volume, 0.899 for stroke volume, 0.972 for ejection fraction and 0.991 for myocardial mass (all p < 0.001). Clinically meaningful differences between fully automated and expert corrected results occurred in 18% of cases, comparable to the rate between the two manual readers (20%). Deep learning-based fully automated analysis of LV volumes and function is feasible, time-efficient and highly accurate. Clinically relevant corrections are required in a minority of cases.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Anke Busse
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Daniel Cantré
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Seyrani Yücel
- Department of Internal Medicine, Divison of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Alper Öner
- Department of Internal Medicine, Divison of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Hüseyin Ince
- Department of Internal Medicine, Divison of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
14
|
Bhattad PB, Jain V. Artificial Intelligence in Modern Medicine - The Evolving Necessity of the Present and Role in Transforming the Future of Medical Care. Cureus 2020; 12:e8041. [PMID: 32528777 PMCID: PMC7282357 DOI: 10.7759/cureus.8041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The dexterity of computer systems to resemble and mimic human intelligence is artificial intelligence. Artificial intelligence has reformed the diagnostic and therapeutic precision and competence in various fields of medicine. Artificial intelligence appears to play a bright role in medical diagnosis. Computer systems using artificial intelligence help in the assessment of medical images and enormous data. This research aims to identify how artificial intelligence-based technology is reforming the art of medicine. Artificial intelligence empowers providers in improving efficiency and overall healthcare. Newer machine learning techniques lead the automatic diagnostic systems. Areas of medicine such as medical imaging, automated clinical decision-making support have made significant advances with respect to artificial intelligence technology. With improved diagnosis and prognosis, artificial intelligence possesses the capability to revolutionize various fields of medicine. Artificial intelligence has its own limitations and cannot replace a bedside clinician. In the evolving modern medical digital world, physicians need to support artificial intelligence rather than fear it replacing trained physicians for improved healthcare.
Collapse
Affiliation(s)
| | - Vinay Jain
- Radiology, James H. Quillen Veterans Affairs Medical Center, Johnson City, USA
| |
Collapse
|