1
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|
2
|
Wang X, Yu C, Liu Y, Yang L, Li Y, Yao W, Cai Y, Yan X, Li S, Cai Y, Li S, Peng X. GmFAD3A, A ω-3 Fatty Acid Desaturase Gene, Enhances Cold Tolerance and Seed Germination Rate under Low Temperature in Rice. Int J Mol Sci 2019; 20:E3796. [PMID: 31382584 PMCID: PMC6696117 DOI: 10.3390/ijms20153796] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Low temperature is an environmental stress factor that is always been applied in research on improving crop growth, productivity, and quality of crops. Polyunsaturated fatty acids (PUFAs) play an important role in cold tolerance, so its genetic manipulation of the PUFA contents in crops has led to the modification of cold sensitivity. In this study, we over-expressed an ω-3 fatty acid desaturase from Glycine max (GmFAD3A) drove by a maize ubiquitin promoter in rice. Compared to the wild type (ZH11), ectopic expression of GmFAD3A increased the contents of lipids and total PUFAs. Seed germination rates in GmFAD3A transgenic rice were enhanced under low temperature (15 °C). Moreover, cold tolerance and survival ratio were significantly improved in GmFAD3A transgenic seedlings. Malondialdehyde (MDA) content in GmFAD3A transgenic rice was lower than that in WT under cold stress, while proline content obviously increased. Meanwhile, the activities of superoxide dismutase (SOD), hydroperoxidase (CAT), and peroxidase (POD) increased substantially in GmFAD3A transgenic rice after 4 h of cold treatment. Taken together, our results suggest that GmFAD3A can enhances cold tolerance and the seed germination rate at a low temperature in rice through the accumulation of proline content, the synergistic increase of the antioxidant enzymes activity, which finally ameliorated the oxidative damage.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chao Yu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi Liu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lu Yang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Nanchang 330200, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Yang JC, Li M, Xie XZ, Han GL, Sui N, Wang BS. Deficiency of phytochrome B alleviates chilling-induced photoinhibition in rice. AMERICAN JOURNAL OF BOTANY 2013; 100:1860-70. [PMID: 24018854 DOI: 10.3732/ajb.1200574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Food crops of tropical origins, such as rice, are often cultivated in areas with suboptimal temperature regimes. The rice phytochrome B-deficient mutant (phyB) is tolerant of chilling temperatures compared with the wild type (WT) under low irradiance, and unsaturated fatty acids (USFAs) of membrane lipids have been shown to play an important role in chilling resistance. However, the relationship between phytochrome B and membrane lipids has not been empirically investigated. • METHODS We assessed various photosynthesis indexes in phyB and WT rice: chlorophyll content, maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII), the quantum yield of PSII electron transport (ΦPSII), the percentage of oxidizable P700 (P700), nonphotochemical quenching (NPQ), and the de-epoxidized ratio of xanthophyll cycle (A+Z)/(V+A+Z). We also analyzed the ultrastructure and fatty acid desaturases (FADs) and glycerol-3-phosphate acyltransferase (GPAT) genes of the chloroplasts using transmission electron microscopy and real-time PCR. • RESULTS After a chilling treatment of 24 h, chloroplast damage and USFA content reduction were more severe in the WT than in the phyB mutant. Genes involved in the synthesis of USFAs in membranes such as FADs and GPAT were more stable in phyB than in WT. Chlorophyll content, Fv/Fm, ΦPSII, and P700 decreased more slowly under chilling stress and recovered more rapidly under optimal conditions in phyB than in WT. The (A+Z)/(V+A+Z) and NPQ increased more rapidly in phyB than in the WT after 24 h of chilling treatment. • CONCLUSIONS Phytochrome B deficiency in rice with more stabilized chloroplast structure and higher USFA content in membrane lipids could alleviate chilling-induced photoinhibition.
Collapse
Affiliation(s)
- Jian-Chao Yang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | | | | | | | | | | |
Collapse
|
4
|
Zhang F, Huang L, Wang W, Zhao X, Zhu L, Fu B, Li Z. Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics 2012; 13:461. [PMID: 22953761 PMCID: PMC3526417 DOI: 10.1186/1471-2164-13-461] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/03/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Rice in tropical and sub-tropical areas is often subjected to cold stress at the seedling stage, resulting in poor growth and yield loss. Although japonica rice is generally more cold tolerant (CT) than indica rice, there are several favorable alleles for CT exist in indica that can be used to enhance CT in rice with a japonica background. Genome-wide gene expression profiling is an efficient way to decipher the molecular genetic mechanisms of CT enhancement and to provide valuable information for CT improvement in rice molecular breeding. In this study, the transcriptome of the CT introgression line (IL) K354 and its recurrent parent C418 under cold stress were comparatively analyzed to explore the possible CT enhancement mechanisms of K354. RESULTS A total of 3184 differentially expressed genes (DEGs), including 195 transcription factors, were identified in both lines under cold stress. About half of these DEGs were commonly regulated and involved in major cold responsive pathways associated with OsDREB1 and OsMyb4 regulons. K354-specific cold-induced genes were functionally related to stimulus response, cellular cell wall organization, and microtubule-based movement processes that may contribute to increase CT. A set of genes encoding membrane fluidity and defensive proteins were highly enriched only in K354, suggesting that they contribute to the inherent CT of K354. Candidate gene prediction based on introgressed regions in K354 revealed genotype-dependent CT enhancement mechanisms, associated with Sir2, OsFAD7, OsWAK112d, and programmed cell death (PCD) related genes, present in CT IL K354 but absent in its recurrent parent C418. In K354, a number of DEGs were co-localized onto introgressed segments associated with CT QTLs, providing a basis for gene cloning and elucidation of molecular mechanisms responsible for CT in rice. CONCLUSIONS Genome-wide gene expression analysis revealed that genotype-specific cold induced genes and genes with higher basal expression in the CT genotype contribute jointly to CT improvement. The molecular genetic pathways of cold stress tolerance uncovered in this study, as well as the DEGs co-localized with CT-related QTLs, will serve as useful resources for further functional dissection of the molecular mechanisms of cold stress response in rice.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|