1
|
Xu X, Liu X, Li F, Hao C, Sun H, Yang S, Jiao Y, Lu X. Impact of Insect-Resistant Transgenic Maize 2A-7 on Diversity and Dynamics of Bacterial Communities in Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2046. [PMID: 37653965 PMCID: PMC10222967 DOI: 10.3390/plants12102046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/15/2023]
Abstract
Artificial modification of Bacillus thuringiensis (Bt) proteins can effectively improve their resistance to target pests, but the effect of such modification on the diversity of rhizosphere microorganisms remains unclear. Transgenic maize 2A-7 contains two artificially modified Bt proteins, mCry1Ab and mCry2Ab. These proteins can enter soil and pose a potential threat to soil microbial diversity. To assess their impacts on rhizosphere bacteria communities, the contents of the two Bt proteins and changes in bacterial community diversity in the rhizosphere soils of transgenic maize 2A-7 and its control variety were analyzed at different growth stages in 2020. The results showed that the two Bt proteins were detected at low levels in the rhizosphere soils of 2A-7 plants. No significant differences in soil bacterial diversity were detected between 2A-7 and its control variety at any of the growth stages. Bioinformatics analysis indicated that the growth stage, rather than the cultivar, was the main factor causing changes in bacterial communities. This research provides valuable data for understanding the impact of Bt crops on the soil microbiome, and establishes a theoretical basis for evaluation of their safety.
Collapse
Affiliation(s)
- Xiaohui Xu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xin Liu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Fan Li
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chaofeng Hao
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongwei Sun
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuke Yang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yue Jiao
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xingbo Lu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| |
Collapse
|
2
|
Li Y, Wang C, Ge L, Hu C, Wu G, Sun Y, Song L, Wu X, Pan A, Xu Q, Shi J, Liang J, Li P. Environmental Behaviors of Bacillus thuringiensis ( Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1212. [PMID: 35567212 PMCID: PMC9100956 DOI: 10.3390/plants11091212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/12/2023]
Abstract
Bt proteins are crystal proteins produced by Bacillus thuringiensis (Bt) in the early stage of spore formation that exhibit highly specific insecticidal activities. The application of Bt proteins primarily includes Bt transgenic plants and Bt biopesticides. Transgenic crops with insect resistance (via Bt)/herbicide tolerance comprise the largest global area of agricultural planting. After artificial modification, Bt insecticidal proteins expressed from Bt can be released into soils through root exudates, pollen, and plant residues. In addition, the construction of Bt recombinant engineered strains through genetic engineering has become a major focus of Bt biopesticides, and the expressed Bt proteins will also remain in soil environments. Bt proteins expressed and released by Bt transgenic plants and Bt recombinant strains are structurally and functionally quite different from Bt prototoxins naturally expressed by B. thuringiensis in soils. The former can thus be regarded as an environmentally exogenous substance with insecticidal toxicity that may have potential ecological risks. Consequently, biosafety evaluations must be conducted before field tests and production of Bt plants or recombinant strains. This review summarizes the adsorption, retention, and degradation behavior of Bt insecticidal proteins in soils, in addition to their impacts on soil physical and chemical properties along with soil microbial diversity. The review provides a scientific framework for evaluating the environmental biosafety of Bt transgenic plants, Bt transgenic microorganisms, and their expression products. In addition, prospective research targets, research methods, and evaluation methods are highlighted based on current research of Bt proteins.
Collapse
Affiliation(s)
- Yujie Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cui Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lei Ge
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cong Hu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Yu Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lili Song
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Xiao Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Aihu Pan
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Qinqing Xu
- Shandong County Agricultural Technology Extension Center, Jinan 250003, China;
| | - Jialiang Shi
- Dezhou Academy of Agricultural Sciences, Dezhou 253000, China;
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| |
Collapse
|