1
|
Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species : Codon usage of chloroplast genes in Oryza species. PLANTA 2020; 252:67. [PMID: 32989601 DOI: 10.1007/s00425-020-03470-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
The codon usage bias in chloroplast genes of Oryza species was low and AT rich. The pattern of codon usage was different among Oryza species and mainly influenced by mutation pressure and natural selection. Codon usage bias (CUB) is the unequal usage of synonymous codons in which some codons are more preferred to others in the coding sequences of genes. It shows a species-specific property. We studied the patterns of codon usage and the factors that influenced the CUB of protein-coding chloroplast (cp) genes in 18 Oryza species as no work was yet reported. The nucleotide composition analysis revealed that the overall GC content of cp genes in different species of Oryza was lower than 50%, i.e., Oryza cp genes were AT rich. Synonymous codon usage order (SCUO) suggested that CUB was weak in the cp genes of different Oryza species. A highly significant correlation was observed between overall nucleotides and its constituents at the third codon position suggesting that both, mutation pressure and natural selection, might influence the CUB. Correspondence analysis (COA) revealed that codon usage pattern differed across Oryza species. In the neutrality plot, a narrow range of GC3 distribution was recorded and some points were diagonally distributed in all the plots, suggesting that natural selection and mutation pressure might have influenced the CUB. The slope of the regression line was < 0.5, augmenting our inference that natural selection might have played a major role, while mutation pressure had a minor role in shaping the CUB of cp genes. The magnitudes of mutation pressure and natural selection on cp genes varied across Oryza species.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Sophiarani Yengkhom
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| |
Collapse
|
2
|
Qin WY, Gan LN, Xia RW, Sun SY, Zhu GQ, Wu SL, Bao WB. New insights into the codon usage patterns of the bactericidal/permeability-increasing (BPI) gene across nine species. Gene 2017; 616:45-51. [PMID: 28336464 DOI: 10.1016/j.gene.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/31/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins known as super-antibiotics that are implicated as endotoxin neutralising agents. Non-uniform usage of synonymous codons for a specific amino acid during translation of a protein is known as codon usage bias (CUB). Analysis of CUB and compositional dynamics of coding sequences could contribute to a better understanding of the molecular mechanism and the evolution of a particular gene. In this study, we performed CUB analysis of the complete coding sequences of the BPI gene from nine different species. The codon usage patterns of BPI across different species were found to be influenced by GC bias, particularly GC3s, with a moderate bias in the codon usage of BPI. We found significant similarities in the codon usage patterns in BPI gene among closely related species, such as Sus_scrofa and Bos_taurus. Moreover, we observed evolutionary conservation of the most over-represented codon CUG for the amino acid leucine in the BPI gene across all species. In conclusion, our analysis provides a novel insight into the codon usage patterns of BPI. This information facilitates an improved understanding of the structural, functional and evolutionary significance of BPI gene among species, and provides a theoretical reference for developing antiseptic drug proteins with high efficiency across species.
Collapse
Affiliation(s)
- Wei-Yun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Li-Na Gan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ri-Wei Xia
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shou-Yong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Guo-Qiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Sheng-Long Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wen-Bin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|