1
|
Chong JR, Chai YL, Lee JH, Howlett D, Attems J, Ballard CG, Aarsland D, Francis PT, Chen CP, Lai MKP. Increased Transforming Growth Factor β2 in the Neocortex of Alzheimer's Disease and Dementia with Lewy Bodies is Correlated with Disease Severity and Soluble Aβ42 Load. J Alzheimers Dis 2018; 56:157-166. [PMID: 27911312 DOI: 10.3233/jad-160781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Of the three transforming growth factor (TGF)-β isoforms known, TGFβ1 deficits have been widely reported in Alzheimer's disease (AD) and studied as a potential therapeutic target. In contrast, the status of TGFβ2, which has been shown to mediate amyloid-β (Aβ)-mediated neuronal death, are unclear both in AD and in Lewy body dementias (LBD) with differential neuritic plaque and neurofibrillary tangle burden. OBJECTIVE To measure neocortical TGFβ2 levels and their correlations with neuropathological and clinical markers of disease severity in a well-characterized cohort of AD as well as two clinical subtypes of LBD, dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), known to manifest relatively high and low Aβ plaque burden, respectively. METHODS Postmortem samples from temporal cortex (BA21) were measured for TGFβ2 using a Luminex-based platform, and correlated with scores for neuritic plaques, neurofibrillary tangles, α-synuclein pathology, dementia severity (as measured by annual decline of Mini-Mental State Examination scores) as well as soluble and total fractions of brain Aβ42. RESULTS TGFβ2 was significantly increased in AD and DLB, but not in PDD. TGFβ2 also correlated with scores for neurofibrillary tangles, Lewy bodies (within the LBD group), dementia severity, and soluble Aβ42 concentration, but not with neuritic plaque scores, total Aβ42, or monomeric α-synuclein immunoreactivity. CONCLUSIONS TGFβ2 is increased in the temporal cortex of AD and DLB, and its correlations with neuropathological and clinical markers of disease severity as well as with soluble Aβ42 load suggest a potential pathogenic role in mediating the neurotoxicity of non-fibrillar Aβ. Our study also indicates the potential utility of targeting TGFβ2 in pharmacotherapeutic approaches to AD and DLB.
Collapse
Affiliation(s)
- Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Howlett
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Clive G Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Dag Aarsland
- Department of Neurobiology, Ward Sciences and Society, Karolinska Institute, Stockholm, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
2
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
3
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
4
|
Shirvani-Farsani Z, Behmanesh M, Mohammadi SM, Naser Moghadasi A. Vitamin D levels in multiple sclerosis patients: Association with TGF-β2, TGF-βRI, and TGF-βRII expression. Life Sci 2015; 134:63-7. [PMID: 26037400 DOI: 10.1016/j.lfs.2015.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/09/2023]
Abstract
AIM A variety of evidence suggests that vitamin D can prevent the development of multiple sclerosis (MS). TGF-β pathway genes also play important roles in MS. Here, we aim to study whether vitamin D affects TGF-β pathway gene expression and Expanded Disability Status Scale (EDSS) scores in MS patients. MAIN METHODS A randomized clinical trial was conducted on 31 relapsing-remitting (RR) MS patients. Using real-time RT-PCR, we tested the levels of TGF-β2, TGF-βRI and TGF-βRII mRNAs in the RRMS patients before and after 8 weeks of supplementation with vitamin D. KEY FINDINGS Expression of TGF-β2 mRNA increased 2.84-fold, while TGF-βRI and TGF-βRII mRNA levels did not change after vitamin D treatment. In addition, these results revealed no correlation between the normalized expression of TGF-β2, TGF-βRI, or TGF-βRII and EDSS scores. SIGNIFICANCE Here, we demonstrate new evidence for the complex role of vitamin D in the pathogenesis, activity and progression of MS through the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mahdi Mohammadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
5
|
Polazzi E, Altamira LEP, Eleuteri S, Barbaro R, Casadio C, Contestabile A, Monti B. Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: role of transforming growth factor beta-2. J Neurochem 2009; 110:545-56. [PMID: 19457129 DOI: 10.1111/j.1471-4159.2009.06117.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microglia, the immune cells of the CNS, play essential roles in both physiological and pathological brain states. Here we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine, which induces a Parkinson-like neurodegeneration, and to identify the protective factor(s). MCM nearly completely protects CGNs from 6-hydroxydopamine neurotoxicity and at least some of the protective factor(s) are peptidic in nature. While the fraction of the medium containing molecules < 30 kDa completely protects CGNs, fractions containing molecules < 10 kDa or > 10 kDa are not neuroprotective. We further demonstrate that microglia release high amounts of transforming growth factor-beta2 (TGF-beta2) and that its exogenous addition to the fraction of the medium not containing it (< 10 kDa) fully restores the neuroprotective action. Moreover, MCM neuroprotection is significantly counteracted by an inhibitor of TGF-beta2 transduction pathway. Our results identify TGF-beta2 as an essential neuroprotective factor released by microglia in its culture medium that requires to be fully effective the concomitant presence of other factor(s) of low molecular weight.
Collapse
|
6
|
|
7
|
Calabrese EJ. Dose-Response Features of Neuroprotective Agents: An Integrative Summary. Crit Rev Toxicol 2008; 38:253-348. [DOI: 10.1080/10408440801981965] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Torres EM, Weyrauch UM, Sutcliffe R, Dunnett SB. A Rat Embryo Staging Scale for the Generation of Donor Tissue for Neural Transplantation. Cell Transplant 2008; 17:535-42. [DOI: 10.3727/096368908785096006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In rat models of Parkinson's and Huntington's diseases, embryonic neural cells obtained from embryos of specified ages can be implanted into the brain to partially restore both physiology and function. However, in litters produced using overnight mating protocols (often from commercial suppliers), the embryonic age can be difficult to determine precisely. As a result, embryonic size based on crown to rump length (CRL) is usually a more reliable method of embryo staging than the day of mating. This approach is not without difficulty. There are a number of rat staging scales in the literature, none of which deal with donor ages younger than E13, and there are discrepancies between scales at some donor ages. In the present article, we have devised a short mating-period protocol to produce precisely aged embryos. We show that CRL is a highly accurate, reproducible index of donor age and we present an updated embryonic staging scale for Sprague-Dawley (CD) rats that includes donor ages younger than those previously reported.
Collapse
Affiliation(s)
- E. M. Torres
- Department of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | - U. M. Weyrauch
- Department of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | - R. Sutcliffe
- Charles River Laboratories, Research Models & Services, UK
| | - S. B. Dunnett
- Department of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| |
Collapse
|
9
|
Goris A, Williams-Gray CH, Foltynie T, Brown J, Maranian M, Walton A, Compston DAS, Barker RA, Sawcer SJ. Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson’s disease. J Neurol 2007; 254:846-8. [PMID: 17431704 DOI: 10.1007/s00415-006-0414-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/23/2022]
Abstract
Given the known roles of TGFbeta2 in both regulating the immune system and promoting the survival of dopaminergic neurons, it is feasible that genetic variations in TGFB2 might play an aetiological role in neurological diseases such as Multiple Sclerosis (MS) and Parkinson's disease (PD). Hence we performed an indirect association analysis of TGFB2 using 8 haplotype-tagging SNPs in a population of 937 MS patients, 538 PD cases and 2022 controls. We found no evidence for association with susceptibility or progression of MS, but have demonstrated a trend towards association of the 5' region of the gene with susceptibility to PD. Further analysis of TGFB2 is warranted in other PD cohorts.
Collapse
Affiliation(s)
- A Goris
- Neurology Unit, Department of Clinical Neurosciences University of Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|