1
|
Khatun H, Yamanaka KI, Sugimura S. Antioxidant sericin averts the disruption of oocyte-follicular cell communication triggered by oxidative stress. Mol Hum Reprod 2024; 30:gaae001. [PMID: 38244573 DOI: 10.1093/molehr/gaae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Antioxidants are free radical scavengers that increase oocyte quality and improve female fertility by suppressing oxidative stress. However, the related mechanisms remain unclear. The present study was designed to examine whether a reduction of oxidative stress from using the antioxidant sericin led to expanded cumulus cell (CC)-oocyte communication and oocyte developmental acquisition in a bovine model. We found that cumulus-oocyte complexes (COCs) matured in the presence of sericin showed a significantly increased oocyte meiotic maturation rate (P < 0.01) and accelerated subsequent blastocyst formation, as more blastocysts were found at the hatched stage (P < 0.05) compared to that in the control group. In contrast to the control group, sericin suppressed H2O2 levels in COCs, resulting in a markedly enhanced CC-oocyte gap junction communication index and number of transzonal projections, which were preserved until 18 h of oocyte maturation. These findings indicate that sericin reduces disruption of oocyte-follicular cell communication induced by oxidative stress. Sericin consistently increased intra-oocyte glutathione (GSH) levels and reduced oocyte H2O2 levels (P < 0.05), both of which were ablated when GSH synthesis was inhibited by buthionine sulfoximide (an inhibitor of GSH synthesis). Furthermore, the inhibition of GSH synthesis counteracted the positive effects of sericin on subsequent embryo developmental competence (P < 0.01). Intra-oocyte GSH levels were positively associated with blastocyst development and quality. These outcomes demonstrate new perspectives for the improvement of oocyte quality in assisted reproductive technology and may contribute to developing treatment strategies for infertility and cancer.
Collapse
Affiliation(s)
- Hafiza Khatun
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugimura
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Yamatoya K, Nagai Y, Teramoto N, Kang W, Miyado K, Nakata K, Yagi T, Miyamoto Y. Dimethyl Sulfoxide-Free Cryopreservation of Differentiated Human Neuronal Cells. Biopreserv Biobank 2023; 21:631-634. [PMID: 36827090 DOI: 10.1089/bio.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In recent years, cells provided by cell banks and medical facilities have been used for cell therapy, regenerative therapy, and fundamental research. Cryopreservation is an effective means of maintaining stable cell quality over a long period of time. The slow freezing method is most suitable for processing many human cells isolated simultaneously from organs and tissues, but it is necessary to develop a freezing solution for this method. In this study, we report the successful development of a dimethyl sulfoxide (DMSO)-free freezing medium for differentiated neuronal cells. Neuronal differentiation results in the differentiation of undifferentiated SK-N-SH cells into neuronal cells. A basic freezing medium (BFM) was prepared using Dulbecco's modified Eagle's medium, 1 M maltose, and 1% sericin as the essential ingredients, supplemented with 5%-40% propylene glycol (PG). Each BFM supplemented with 5%-40% PG was evaluated in undifferentiated cells. After thawing, BFM supplemented with 10% and 20% PG were 83% and 88% viable, respectively. There was no significant difference between the 10% and 20% PG groups. However, a significant difference was observed when the concentration of PG in the BFM decreased by 5% (5% PG vs. 10% PG; p = 0.0026). Each DMSO-free BFM was evaluated using differentiated neuronal cells. There was no significant difference between the 10% PG BFM and stem-CB-free groups. Viability was significantly different in the 10% glycerol BFM (4.8%) and 10% PG BFM (45%) (p = 0.028). The differentiated cells with 10% PG BFM showed higher adherence to culture dishes than those with 10% glycerol BFM. These results show that BFM containing PG was effective in differentiating neuronal cells. DMSO affects the central nervous system at low concentrations. This report indicates that DMSO is unsuitable for neuronal cells with multipotent differentiation potential. Therefore, it is essential for cell banking and transplantation medicine services to select appropriate cell freezing media.
Collapse
Affiliation(s)
- Kenji Yamatoya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Yuya Nagai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Japan
| | - Kazuya Nakata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
- Division of Sciences for Biological System, Institute of Agriculture, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Tohru Yagi
- Department of Mechanical Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Yoshitaka Miyamoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
| |
Collapse
|
3
|
Miyamoto Y. Cryopreservation of Cell Sheets for Regenerative Therapy: Application of Vitrified Hydrogel Membranes. Gels 2023; 9:gels9040321. [PMID: 37102933 PMCID: PMC10137452 DOI: 10.3390/gels9040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Organ transplantation is the first and most effective treatment for missing or damaged tissues or organs. However, there is a need to establish an alternative treatment method for organ transplantation due to the shortage of donors and viral infections. Rheinwald and Green et al. established epidermal cell culture technology and successfully transplanted human-cultured skin into severely diseased patients. Eventually, artificial cell sheets of cultured skin were created, targeting various tissues and organs, including epithelial sheets, chondrocyte sheets, and myoblast cell sheets. These sheets have been successfully used for clinical applications. Extracellular matrix hydrogels (collagen, elastin, fibronectin, and laminin), thermoresponsive polymers, and vitrified hydrogel membranes have been used as scaffold materials to prepare cell sheets. Collagen is a major structural component of basement membranes and tissue scaffold proteins. Collagen hydrogel membranes (collagen vitrigel), created from collagen hydrogels through a vitrification process, are composed of high-density collagen fibers and are expected to be used as carriers for transplantation. In this review, the essential technologies for cell sheet implantation are described, including cell sheets, vitrified hydrogel membranes, and their cryopreservation applications in regenerative medicine.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Graduate School of BASE, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Miyamoto Y, Koshidaka Y, Murase K, Kanno S, Noguchi H, Miyado K, Ikeya T, Suzuki S, Yagi T, Teramoto N, Hayashi S. Functional Evaluation of 3D Liver Models Labeled with Polysaccharide Functionalized Magnetic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7823. [PMID: 36363415 PMCID: PMC9658042 DOI: 10.3390/ma15217823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Establishing a rapid in vitro evaluation system for drug screening is essential for the development of new drugs. To reproduce tissues/organs with functions closer to living organisms, in vitro three-dimensional (3D) culture evaluation using microfabrication technology has been reported in recent years. Culture on patterned substrates with controlled hydrophilic and hydrophobic regions (Cell-ableTM) can create 3D liver models (miniature livers) with liver-specific Disse luminal structures and functions. MRI contrast agents are widely used as safe and minimally invasive diagnostic methods. We focused on anionic polysaccharide magnetic iron oxide nanoparticles (Resovist®) and synthesized the four types of nanoparticle derivatives with different properties. Cationic nanoparticles (TMADM) can be used to label target cells in a short time and have been successfully visualized in vivo. In this study, we examined the morphology of various nanoparticles. The morphology of various nanoparticles showed relatively smooth-edged spherical shapes. As 3D liver models, we prepared primary hepatocyte-endothelial cell heterospheroids. The toxicity, CYP3A, and albumin secretory capacity were evaluated in the heterospheroids labeled with various nanoparticles. As the culture period progressed, the heterospheroids labeled with anionic and cationic nanoparticles showed lower liver function than non-labeled heterospheroids. In the future, there is a need to improve the method of creation of artificial 3D liver or to design a low-invasive MRI contrast agent to label the artificial 3D liver.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yumie Koshidaka
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsutoshi Murase
- Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi 452-0067, Japan
| | - Shoichiro Kanno
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Ikeya
- Photosensitive Materials Research Center, Toyo Gosei Co., Ltd., 4-2-1 Wakahagi, Inzai-shi, Chiba 270-1609, Japan
| | - Satoshi Suzuki
- Research Laboratories, HAB Research Organization, Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Tohru Yagi
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Yamatoya K, Nagai Y, Teramoto N, Kang W, Miyado K, Nakata K, Yagi T, Miyamoto Y. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen Ther 2022; 19:58-68. [PMID: 35059480 PMCID: PMC8749124 DOI: 10.1016/j.reth.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The effective use of human-derived cells that are difficult to freeze, such as parenchymal cells and differentiated cells from stem cells, is crucial. A stable supply of damage-sensitive cells, such as differentiated neuronal cells, neurons, and glial cells can contribute considerably to cell therapy. We developed a serum-free freezing solution that is effective for the cryopreservation of differentiated neuronal cells. The quality of the differentiated and undifferentiated SK-N-SH cells was determined based on cell viability, live-cell recovery rate, and morphology of cultured cells, to assess the efficacy of the freezing solutions. The viability and recovery rate of the differentiated SK-N-SH neuronal cells were reduced by approximately 1.5-folds compared to that of the undifferentiated SK-N-SH cells. The viability and recovery rate of the differentiated SK-N-SH cells were remarkably different between the freezing solutions containing 10% DMSO and that containing 10% glycerol. Cryoprotectants such as fetal bovine serum (FBS), antifreeze proteins (sericin), and sugars (maltose), are essential for protecting against freeze damage in differentiated neuronal cells and parenchymal cells. Serum-free alternatives (sericin and maltose) could increase safety during cell transplantation and regenerative medicine. Considering these, we propose an effective freezing solution for the cryopreservation of neuronal cells. The timing of freezing during cell differentiation. More effective serum-free freezing solution for differentiated neuronal cells. Improving the quality of damage-sensitive cells, such as differentiated neuronal cells.
Collapse
|
6
|
Aghaz F, Khazaei M, Vaisi-Raygani A, Bakhtiyari M. Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm. Aging Male 2020; 23:469-476. [PMID: 30453816 DOI: 10.1080/13685538.2018.1529156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The destructive effects of sperm cryopreservation result in decreased sperm parameters and their fertilizing ability. Antioxidants supplementation can potentially improve cryopreservation outcomes. In this study, we tried to investigate the effects of sericin supplementation in freezing and thawing media on frozen-thawed human sperm motility, morphology, viability, and DNA fragmentation. In experiment 1, semen samples were collected from 30 healthy fertile men and were cryopreserved in the presence of freezing medium supplemented with different concentrations of sericin (0, 0.5, 1, 2.5, and 5%). The results showed that the addition of 2.5 and 5% sericin in freezing medium significantly increased sperm viability and total motility (A + B) and decreased DNA fragmentation (P < 0.05). In experiment 2, semen samples were collected from 21 fertile men and were cryopreserved in freezing medium without any supplementation for 48 h. Then, the samples were thawed in medium supplemented with different concentrations of sericin (0, 0.5, 1, 2.5, and 5%). The addition of 5% sericin to thawing medium increased the total motility, viability, and decreased DNA fragmentation compared with those in thaws without sericin. In nutshell, the results clearly indicate the feasibility of sericin as an cryoprotective supplement for freezing media in human spermatozoa.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiyari
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Zhang M, Cao TT, Wei ZG, Zhang YQ. Silk Sericin Hydrolysate is a Potential Candidate as a Serum-Substitute in the Culture of Chinese Hamster Ovary and Henrietta Lacks Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5300249. [PMID: 30690536 PMCID: PMC6346402 DOI: 10.1093/jisesa/iey137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 05/05/2023]
Abstract
The silk sericin hydrolysate (SSH) from the waste of silk processing as a substitute of fetal bovine serum (FBS) was used for the culture of Chinese hamster ovary (CHO) cells and Henrietta Lacks (Hela) strain of human cervical cancer cells. The survival ratio of these cells cultured in SSH media were similar to or higher than those in FBS media. Especially after the serum was replaced by low concentration of SSH at 15.0 μg/ml for 5 d, the proliferation of both cells was also similar to or higher than that of FBS group; the percentages of CHO and Hela cells in S-phase were 28.9 and 28.0%, respectively. The former is nearly two times that of FBS group, the latter is also higher than the control group. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that among the differentially expressed genes, the relative expression of CXCL12 gene of CHO cells in SSH group increased, was three times that of serum group, and the relative expression of LCN2 gene of Hela cells increased 2.8 times, indicating that these related genes were activated to promote cell growth and proliferation. These results fully illustrated the hydrolysated sericin has a potential use as serum substitutes in cell culture.
Collapse
Affiliation(s)
- Meng Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Ting-Ting Cao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
- Corresponding author, e-mail: (Y.-Q. Zhang)
| |
Collapse
|
9
|
Huang Y, Peng Q, Li HY, Jia ZD, Li Y, Gao Y. Novel sericin-based hepatocyte serum-free medium and sericin’s effect on hepatocyte transcriptome. World J Gastroenterol 2018; 24:3398-3413. [PMID: 30122879 PMCID: PMC6092578 DOI: 10.3748/wjg.v24.i30.3398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/17/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a novel hepatocyte serum-free medium based on sericin, and to explore the effect of sericin on the hepatocyte transcriptome.
METHODS A controlled trial comparing novel serum-free medium and other media: C3A cells were cultured in our novel serum-free medium, HepatoZYME, complete medium (DMEM/F12 with 100 mL/L FBS), and DMEM/F12, and then cell attachment, proliferation, and function as well as the biocompatibility of the media were assessed. A comparative study of serum-free media with or without 2 mg/mL sericin: the effect of sericin on C3A growth was assessed by cell viability and proliferation, the effect of sericin on C3A cell cycle distribution was determined by flow cytometry, and the effect of sericin on the C3A transcriptome was assessed by gene-chip array and RT-qPCR.
RESULTS More C3A cells attached to the plate containing our serum-free medium than to those containing HepatoZYME and DMEM/F12 at 24 h post-seeding. Both the viability and proliferation rate of C3A cells in sericin-based serum-free medium were superior to those of cells in HepatoZYME and DMEM/F12 (P < 0.001). The content of albumin and urea in our serum-free medium was significantly higher than that in HepatoZYME and DMEM/F12 throughout the whole culture period (P < 0.001) and was similar to that in complete medium at day 3, 4, and 5. In part 2, cell viability and proliferation were greater in the presence of 2 mg/mL sericin (P < 0.001), as was the proportion of cells in S phase (16.21% ± 0.98% vs 12.61% ± 0.90%, P < 0.01). Gene-chip array analysis indicated that the expression of CCR6, EGFR, and FOS were up-regulated by 2 mg/mL sericin, and RT-qPCR revealed that the expression of CCR6, EGFR, FOS, AKT1, JNK1, NFkB1, MMP-9, MEK2, ERK1/2 and MYC was up-regulated by 2 mg/mL sericin (P < 0.05).
CONCLUSION We developed a novel hepatocyte serum-free medium. Sericin probably enhances cell attachment through the CCR6-Akt-JNK-NF-κB pathway and promotes cell proliferation through CCR6-mediated activation of the ERK1/2-MAPK pathway.
Collapse
Affiliation(s)
- Yun Huang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Hai-Yan Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Zhi-Dong Jia
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
10
|
Khatun H, Egashira J, Sakatani M, Takenouchi N, Tatemoto H, Wada Y, Yamanaka KI. Sericin enhances the developmental competence of heat-stressed bovine embryos. Mol Reprod Dev 2018; 85:696-708. [DOI: 10.1002/mrd.23038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hafiza Khatun
- Faculty of Agriculture; Saga University; Saga Japan
- Faculty of Animal Husbandry; Bangladesh Agricultural University; Mymensingh Bangladesh
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| | - Junki Egashira
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
- Division of Cattle Research; Saga Prefectural Livestock Experiment Station; Saga Japan
| | - Miki Sakatani
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center, NARO; Kumamoto Japan
| | - Naoki Takenouchi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center, NARO; Kumamoto Japan
| | - Hideki Tatemoto
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
- Faculty of Agriculture; University of the Ryukyus; Okinawa Japan
| | - Yasuhiko Wada
- Faculty of Agriculture; Saga University; Saga Japan
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| | - Ken-ichi Yamanaka
- Faculty of Agriculture; Saga University; Saga Japan
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| |
Collapse
|
11
|
Miyamoto Y, Ikeuchi M, Noguchi H, Hayashi S. Long-term Cryopreservation of Human and other Mammalian Cells at -80 °C for 8 Years. CELL MEDICINE 2018; 10:2155179017733148. [PMID: 32634179 PMCID: PMC6172990 DOI: 10.1177/2155179017733148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
Abstract
Freezing is recognized as the most effective method of maintaining a stable supply of
various cell types for long-term storage. However, cells might be damaged by environmental
changes during the freezing process. There are various factors that influence the function
of cells cultured after cryopreservation and thawing. These factors include
cryopreservation solutions, biomaterials, freezing methods, and the freezing and
preservation temperatures. There is also a risk of infection with mycoplasma in liquid
nitrogen phase. Therefore, it is necessary to consider more useful and safe methods for
freezing and storing various cells. In this study, we investigated the effects of
temperature during long-term storage (8 years at −80 °C and in liquid nitrogen phase) on
the quality of various cells (human hepatocellular carcinoma cells, bovine carotid artery
normal endothelial cells, mouse fibroblast cells 3T3, and mouse embryo fibroblast cells
STO). We examined the cell viability of cryopreserved human hepatocellular carcinoma cells
at −80 °C using culture medium containing 10% DMSO, Cell Banker 1, and Cell Banker 2 as
cryopreservation solutions. Among these solutions, Cell Banker 1 showed the highest
efficiency. The viability of human hepatocellular carcinoma and bovine carotid artery
normal endothelial cells in the Cell Banker 1 stored at −80 °C was over 90%, which was the
same as that in liquid nitrogen phase. The cells stored at −80 °C had a morphology similar
to that of the cells stored at liquid nitrogen phase. The proliferation of cells stored at
−80 °C and in liquid nitrogen phase was not significantly different. Furthermore, none of
the cells were infected with mycoplasma. There was no marked difference in the albumin
secretion between the human hepatocellular carcinoma cells stored at −80 °C and those in
liquid nitrogen phase. The short tandem repeats of the human hepatocellular carcinoma
cells stored at −80 °C were identical to those stored in liquid nitrogen phase. In this
report, various cells stored long-term at −80 °C were able to be used effectively after
long-term storage. These findings can be applied to drug discovery, cell medicine, and
cell therapy.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masashi Ikeuchi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 2017; 49:1029-1039. [DOI: 10.1007/s00726-017-2396-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
13
|
Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived from membrane separation. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Liu L, Wang J, Duan S, Chen L, Xiang H, Dong Y, Wang W. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture. Sci Rep 2016; 6:31516. [PMID: 27531556 PMCID: PMC4987615 DOI: 10.1038/srep31516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium.
Collapse
Affiliation(s)
- Liyuan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchang Duan
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- South China Normal University, Guangzhou, 510631, China
| | - Yang Dong
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
15
|
Miki T, Wong W, Zhou E, Gonzalez A, Garcia I, Grubbs BH. Biological impact of xeno-free chemically defined cryopreservation medium on amniotic epithelial cells. Stem Cell Res Ther 2016; 7:8. [PMID: 26758986 PMCID: PMC4711023 DOI: 10.1186/s13287-015-0258-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 12/04/2015] [Indexed: 01/14/2023] Open
Abstract
Background Amnion-derived stem cells have been proposed for cell replacement therapy and tissue regeneration. An easily accessible cell source, the placenta, allows us to potentially establish a bio-bank of cells for immunotype matched clinical applications. Several xeno-free (XF) cryopreservation media are currently available for pluripotent stem cells, however, these media have not yet been evaluated for the cryopreservation of amnion-derived stem cells. Methods Human amniotic epithelial cells were collected using standard protocols, and stored at −160 °C in one of five commercially available media. Cells frozen in standard media containing fetal bovine serum served as controls. Cells were then thawed, and evaluated for viability, mitochondrial membrane stability, and senescence status. Quantitative real time PCR was utilized to assess for expression of stem cell genes, and flow cytometry was used to identify the stem cell surface markers. Results Cell recovery and repopulation assays indicated no significant difference between XF media versus standard cryopreservation medium. In addition, no impact was observed on the senescence status, the cytostructural or mitochondrial morphology between the tested cryopreservation media. Differences were observed on the expression of stem cell marker genes (OCT4, SOX2, and NANOG) and a cell surface marker (TRA1-60) following cryopreservation in different chemically defined XF media, however, these were not statistically significant. Conclusions Xeno-free cryopreservation of human amnion-derived stem cells is feasible and can be standardized to establish a bio-bank with human amnion-derived stem cells for future clinical application. Optimization of this media may allow for improved preservation of stem cell-like characteristics.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wisia Wong
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Elton Zhou
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Anthony Gonzalez
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Irving Garcia
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:940-52. [PMID: 26838924 DOI: 10.1016/j.msec.2015.12.082] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Bombyx mori silk is composed of 60-80% fibroin, 15-35% sericin and 1-5% non-sericin component including wax, pigments, sugars and other impurities. For two decades, the protein-based silk fibroin was extensively used in the research and development of medical biomaterials and biomedicines. Sericin is frequently ignored and abandoned as a byproduct or waste in the processing of traditional silk fabrics, silk floss or modern silk biomaterials. However, similar to fibroin, sericin is not only a highly useful biological material, but also a lot of biological activity. Moreover, the non-sericin component present with sericin in the cocoon shell also has a strong biological activity. In this review, the extraction and recovery methods of sericin and the non-sericin component from the cocoon layer are reported, and their composition, properties and biological activity are described to produce a comprehensive report on biomedical materials and biological drugs. In addition, related problems or concerns present in the research and development of sericin are discussed, and a potential application of sericin in sustainable development is also presented.
Collapse
|
17
|
Miyamoto Y, Ikeuchi M, Noguchi H, Yagi T, Hayashi S. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device. CELL MEDICINE 2015; 8:47-56. [PMID: 26858908 DOI: 10.3727/215517915x689056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan; †Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masashi Ikeuchi
- †Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; ‡PRESTO, Japan Science and Technology (JST), Saitama, Japan
| | - Hirofumi Noguchi
- § Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Tohru Yagi
- ¶ School of Information Science and Engineering, Tokyo Institute of Technology , Tokyo , Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Tsurumai-cho, Showa-ku, Nagoya , Japan
| |
Collapse
|
18
|
Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Anim Reprod Sci 2015; 152:26-31. [PMID: 25497424 DOI: 10.1016/j.anireprosci.2014.11.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/20/2014] [Accepted: 11/09/2014] [Indexed: 11/15/2022]
|
19
|
Miyamoto Y, Ikeuchi M, Noguchi H, Yagi T, Hayashi S. Three-Dimensional In Vitro Hepatic Constructs Formed Using Combinatorial Tapered Stencil for Cluster Culture (TASCL) Device. CELL MEDICINE 2014; 7:67-74. [PMID: 26858895 DOI: 10.3727/215517914x685187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Attempts to create artificial liver tissue from various cells have been reported as an alternative method for liver transplantation and pharmaceutical testing. In the construction of artificial liver tissue, the selection of the cell source is the most important factor. However, if an appropriate environment (in vitro/in vivo) cannot be provided for various cells, it is not possible to obtain artificial liver tissue with the desired function. Therefore, we focused on the in vitro environment and produced liver tissues using MEMS technology. In the present study, we report a combinatorial TASCL device to prepare 3D cell constructs in vitro. The TASCL device was fabricated with an overall size of 10 mm × 10 mm with microwells and a top aperture (400 µm × 400 µm, 600 µm × 600 µm, 800 µm × 800 µm) and bottom aperture (40 µm × 40 µm, 80 µm × 80 µm, 160 µm × 160 µm) per microwell. The TASCL device can be easily installed on various culture dishes with tweezers. Using plastic dishes as the bottom surface of the combinatorial TASCL device, 3D hepatocyte constructs of uniform sizes (about ɸ 100 μm-ɸ 200 μm) were produced by increasing the seeding cell density of primary mouse hepatocytes. The 3D hepatocyte constructs obtained using the TASCL device were alive and secreted albumin. On the other hand, partially adhered primary mouse hepatocytes exhibited a cobblestone morphology on the collagen-coated bottom of the individual microwells using the combinatorial TASCL device. By changing the bottom substrate of the TASCL device, the culture environment of the cell constructs was easily changed to a 3D environment. The combinatorial TASCL device described in this report can be used quickly and simply. This device will be useful for preparing hepatocyte constructs for application in drug screening and cell medicine.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya , Japan
| | - Masashi Ikeuchi
- †Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; ‡PRESTO, Japan Science and Technology (JST), Saitama, Japan
| | - Hirofumi Noguchi
- § Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Tohru Yagi
- ¶ School of Information Science and Engineering, Tokyo Institute of Technology , Tokyo , Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya , Japan
| |
Collapse
|
20
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 968] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
21
|
Cryopreservation for bovine embryos in serum-free freezing medium containing silk protein sericin. Cryobiology 2013; 67:184-7. [PMID: 23850826 DOI: 10.1016/j.cryobiol.2013.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022]
Abstract
Because the use of serum in the embryo cryopreservation increases the probability of animal health problems such as bovine spongiform encephalopathy (BSE) and viral infections, this study was conducted to examine the effects of sericin supplementation for serum-free freezing medium on the survival and development of bovine embryos after freezing-thawing and direct transfer to recipients. When in vitro-produced bovine embryos were frozen conventionally in the freezing medium supplemented with various concentrations (0.1%, 0.5%, and 1.0%) of sericin, the percentages of damaged zona pellucida, survival, and development of frozen-thawed embryos were similar to those of embryos frozen in freezing medium supplemented with 0.4% bovine serum albumin (BSA) and 20% fetal bovine serum (FBS) (0.4BSA/20F; control). When in vivo-derived embryos were frozen with 0.4BSA/20F (control), 0.5% sericin +20% FBS (0.5S/20F) or 0.5% sericin (0.5S) and were subsequently transferred directly to recipients, the percentages of recipients with pregnancy and normal calving in the 0.5S/20F group were higher than those in the control group (47.3% vs. 40.1% and 94.6% vs. 87.3%, respectively). Moreover, the percentages of recipients with pregnancy and normal calving (42.2% and 92.4%, respectively) in the 0.5S group were similar with those of other groups. In conclusion, these results indicate that serum-free freezing medium supplemented with sericin is available for the cryopreservation of bovine embryos and that it is beneficial for the elimination of a potential source of biological contamination by serum or BSA.
Collapse
|
22
|
Miyamoto Y, Oishi K, Yukawa H, Noguchi H, Sasaki M, Iwata H, Hayashi S. Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin. Cell Transplant 2012; 21:617-22. [PMID: 22793071 DOI: 10.3727/096368911x605556] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue-derived stem/progenitor cells (ASCs) have attracted attention as a cell source that replaces marrow stromal cells (MSCs); ASCs may thus have applications in both regenerative medicine and cell transplantation. These medical treatments, however, require a high-quality supply of human ASCs. Therefore, the cryopreservation methods have been improved by changing a component of a cryopreservation medium. Sericin, a protein hydrolysate (with an average molecular weight of 30 kDa) is very rich in serine. The viability and the adipogenic/osteogenic potential of human ASCs were tested after freezing in a cryopreservation medium containing sericin. After thawing, the viability of the human ASCs frozen in the cryopreservation medium was found to be more than 95%. The proliferation rate of human ASCs frozen in CELLBANKER 2, and DMEM/Ham's F-12 medium (serum free) + 10% DMSO, 0.1 mol/L maltose, and 1% sericin was higher than that of the cells frozen in the maintenance medium + 10% DMSO. The adipogenic/osteogenic differentiation capabilities of frozen human ASCs were examined by Oil Red O staining/Von Kossa's method. The human ASCs were frozen using CELLBANKER 2, and DMEM/Ham's F-12 medium (serum free) + 10% DMSO, 0.1 mol/L maltose, and 1% sericin were positive. In conclusion, the cryopreservation medium containing sericin is therefore considered to have a beneficial effect on freezing human ASCs. This serum-free cryopreservation medium should be widely used in regenerative medicine, cell transplantation, and biological research.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Miyamoto Y, Noguchi H, Yukawa H, Oishi K, Matsushita K, Iwata H, Hayashi S. Cryopreservation of Induced Pluripotent Stem Cells. CELL MEDICINE 2012; 3:89-95. [PMID: 28058185 DOI: 10.3727/215517912x639405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem (iPS) cells have attracted attention as a promising cell source for medical treatment that could replace marrow stromal cells (MSCs) and adipose tissue-derived stem cells (ASCs). These pluripotent cells can be induced in vitro and in vivo to differentiate into various tissues and organs. The cells will be useful for regenerative medicine, cell therapy, and drug screening. Vitrification is used, as well as a rapid-freeze method, for colony-forming iPS cells. However, the method requires a high degree of technical skill. We herein report a more convenient method for freezing iPS cells in suspension. We examined the proliferation potency of cryopreserved mouse iPS cells using culture medium, 10% DMSO, 10% glycerol, 5% DMSO, 5% glycerol, 5% DMSO + 5% glycerol, cell-freezing medium-DMSO, cell-freezing medium-glycerol, Cell Banker 1, Cell Banker 1+, Cell Banker 2, and Cell Banker 3 as cryopreservation solutions. Among them, Cell Banker 3 showed the highest efficacy in terms of the proliferation of mouse iPS cells. The mouse iPS cells cryopreserved in Cell Banker 3 at -80°C for 12 months maintained a high proliferation rate and an undifferentiated status. The formation of teratomas was also examined. In conclusion, Cell Banker 3 allows for freezing of iPS cells in suspension.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan; †Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Aichi, Japan; ‡Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hirofumi Noguchi
- § Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Higashi-ku, Nagoya , Japan
| | - Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Higashi-ku, Nagoya , Japan
| | - Kenji Matsushita
- † Department of Oral Disease Research, National Center for Geriatrics and Gerontology , Aichi , Japan
| | - Hisashi Iwata
- ¶ Department of Biomedical Sciences, Chubu University College of Life and Health Sciences , Aichi , Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Higashi-ku, Nagoya , Japan
| |
Collapse
|
24
|
Influence of platelet lysate on the recovery and metabolic performance of cryopreserved human hepatocytes upon thawing. Transplantation 2011; 91:1340-6. [PMID: 21516066 DOI: 10.1097/tp.0b013e31821aba37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Storage of human hepatocytes is essential for their use in research and liver cell transplantation. However, cryopreservation and thawing (C/T) procedures have detrimental effects on the viability and functionality compared with fresh cells. The aim of this study was to upgrade the standard C/T methodology to obtain better quality hepatocytes for cell transplantation to improve the overall clinical outcome. METHODS Human hepatocytes isolated from donor livers were cryopreserved in University of Wisconsin solution with 10% dimethyl sulfoxide (standard medium), which was supplemented with 10% or 20% of platelet lysate. Thawing media supplemented with up to 30 mM glucose was also investigated. The effects on cell viability, adhesion proteins (e-cadherin, β-catenin, and β1-integrin) expression, attachment efficiency, apoptotic indicators, Akt signaling, ATP levels, and cytochrome P450 activities have been evaluated. RESULTS The results indicate that the hepatocytes cryopreserved in a medium supplemented with platelet lysate show better recovery than those preserved in the standard medium: higher expression of adhesion molecules, higher attachment efficiency and cell survival; decreased number of apoptotic nuclei and caspase-3 activation; maintenance of ATP levels; and drug biotransformation capability close to those in fresh hepatocytes. Supplementation of thawing media with glucose led to a significant decrease in caspase-3 activation and to increased adhesion molecules preservation and Akt signal transduction after C/T. Minor nonsignificant changes in cell viability and attachment efficiency were observed. CONCLUSIONS These promising results could lead to a new cryopreservation procedure to improve human hepatocyte cryopreservation outcome.
Collapse
|
25
|
Ho STB, Tanavde VM, Hui JH, Lee EH. Upregulation of Adipogenesis and Chondrogenesis in MSC Serum-Free Culture. CELL MEDICINE 2011; 2:27-41. [PMID: 26998400 DOI: 10.3727/215517911x575984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serum-free media have been shown to be effective in the expansion of mesenchymal stem cells (MSCs). However, the effects may go beyond cell expansion as the differentiation potentials of the cells may be modified, thus influencing their efficacy for downstream applications. The latter is poorly understood, and this has prompted an evaluation of the influence of a serum-free formulation on the chondrogenic, adipogenic, and osteogenic potential of MSCs. The media consisted of Knockout™ Serum Replacement (KSR) with a cocktail of growth factors coupled with either collagen or fibronectin coatings. Collagen coating was selected as it promoted consistent cellular attachment. When compared against fetal bovine serum (FBS) controls, cell proliferation in the serum-free media was enhanced at passage 1. Similar levels of surface markers were observed in the two groups with a slight reduction in CD90 and CD73 in the serum-free culture at passage 3. The cultures were screened under differentiation conditions and a better maintenance of the chondrogenic potential was noted in the serum-free media with higher expressions of glycoaminoglycans (GAGs) and collagen II. Chondrogenesis was deficient in the FBS group and this was attributed to the inherent inconsistency of animal serum. Adipogenesis was enhanced in the serum-free group with a higher PPARG expression and lipid accumulation. Similar levels of osteogenic mineralization was noted in the FBS and serum-free groups but collagen I gene expression was suppressed in the latter. This was initially observed during expansion. These observations were attributed to the signaling cascades triggered by the cytokines presented in the serum-free formulation and the interaction with the collagen substrate. The serum-free media helps to maintain and enhance the chondrogenic and adipogenic potentials of the MSCs, respectively. This advantage can be exploited for therapeutic applications in cartilage and adipose tissue engineering.
Collapse
Affiliation(s)
- Saey Tuan Barnabas Ho
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine and NUS Tissue Engineering Program, National University of Singapore , 119074 Singapore
| | - Vivek Madhukar Tanavde
- † Bioinformatics Institute, Agency for Science, Technology and Research , 138671 Singapore
| | - James Hoi Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine and NUS Tissue Engineering Program, National University of Singapore , 119074 Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine and NUS Tissue Engineering Program, National University of Singapore , 119074 Singapore
| |
Collapse
|
26
|
Hunt CJ. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus Med Hemother 2011; 38:107-123. [PMID: 21566712 PMCID: PMC3088734 DOI: 10.1159/000326623] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/26/2011] [Indexed: 12/13/2022] Open
Abstract
SUMMARY: Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.
Collapse
Affiliation(s)
- Charles J. Hunt
- UK Stem Cell Bank, National Institute for Biological Standards and Control, Health Protection Agency, South Mimms, Potters Bar, UK
| |
Collapse
|
27
|
Kobayashi N, Amemiya H, Nagao T, Takahara S. Taking a lesson from the past in organ biology. Cell Transplant 2010; 19:645-7. [PMID: 20525432 DOI: 10.3727/096368910x508735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | |
Collapse
|