1
|
Gujral J, Gandhi OH, Singh SB, Ahmed M, Ayubcha C, Werner TJ, Revheim ME, Alavi A. PET, SPECT, and MRI imaging for evaluation of Parkinson's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:371-390. [PMID: 39840378 PMCID: PMC11744359 DOI: 10.62347/aicm8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025]
Abstract
This review assesses the primary neuroimaging techniques used to evaluate Parkinson's disease (PD) - a neurological condition characterized by gradual dopamine-producing nerve cell degeneration. The neuroimaging techniques explored include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). These modalities offer varying degrees of insights into PD pathophysiology, diagnostic accuracy, specificity by way of exclusion of other Parkinsonian syndromes, and monitoring of disease progression. Neuroimaging is thus crucial for diagnosing and managing PD, with integrated multimodal approaches and novel techniques further enhancing early detection and treatment evaluation.
Collapse
Affiliation(s)
- Jaskeerat Gujral
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Om H Gandhi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | - Malia Ahmed
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Cyrus Ayubcha
- Harvard Medical SchoolBoston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBoston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- The Intervention Center, Rikshopitalet, Division of Technology and Innovation, Oslo University HospitalOslo 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo 0315, Norway
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| |
Collapse
|
2
|
Conti Mazza MM, Centner A, Werner DF, Bishop C. Striatal serotonin transporter gain-of-function in L-DOPA-treated, hemi-parkinsonian rats. Brain Res 2023; 1811:148381. [PMID: 37127174 PMCID: PMC10562932 DOI: 10.1016/j.brainres.2023.148381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to L-DOPA-induced dyskinesia (LID). LID involves a complex interaction between the remaining dopamine (DA) system and the semi-homologous serotonin (5-HT) system. Since serotonin transporters (SERT) have some affinity for DA uptake, they may serve as a functional compensatory mechanism when DA transporters (DAT) are scant. DAT and SERT's functional contributions in the dyskinetic brain have not been well delineated. The current investigation sought to determine how DA depletion and L-DOPA treatment affect DAT and SERT transcriptional processes, translational processes, and functional DA uptake in the 6-hydroxydopamine-lesioned hemi-parkinsonian rat. Rats were counterbalanced for motor impairment into equally lesioned treatment groups then given daily L-DOPA (0 or 6 mg/kg) for 2 weeks. At the end of treatment, the substantia nigra was processed for tyrosine hydroxylase (TH) and DAT gene expression and dorsal raphe was processed for SERT gene expression. The striatum was processed for synaptosomal DAT and SERT protein expression and ex vivo DA uptake. Nigrostriatal DA loss severely reduced DAT mRNA and protein expression in the striatum with minimal changes in SERT. L-DOPA treatment, while not significantly affecting DAT or SERT alone, did increase striatal SERT:DAT protein ratios. Using ex vivo microdialysis, L-DOPA treatment increased DA uptake via SERT when DAT was depleted. Overall, these results suggest that DA loss and L-DOPA treatment uniquely alter DAT and SERT, revealing implications for monoamine transporters as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.
Collapse
Affiliation(s)
- Melissa M Conti Mazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
3
|
Ni R. PET imaging in animal models of Parkinson's disease. Behav Brain Res 2023; 438:114174. [PMID: 36283568 DOI: 10.1016/j.bbr.2022.114174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Chiu CH, Weng SJ, Yeh SHH, Jhao YT, Chang HF, Huang WS, Cheng CY, Yeh CC, Ma KH. Assessment of the anti-nociceptive effects of fetal ventral mesencephalic tissue allografts in a rat model of hemi-Parkinson's disease using fMRI. Front Aging Neurosci 2022; 14:948848. [PMID: 36466604 PMCID: PMC9716198 DOI: 10.3389/fnagi.2022.948848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2023] Open
Abstract
Extensive studies showed increased subjective pain sensitivity in Parkinson's disease (PD), which appeared to be partially reversed by dopaminergic (DA) treatment. Although cell replacement represents an attractive therapeutic strategy, its potential for PD-related hyperalgesia remains unclear. We investigated re-establishment of DA function via allografting exogenic DA cells on pain hypersensitivity in a rat model of PD. We evaluated the anti-nociceptive effects of fetal ventral mesencephalic (rVM) tissue allografts in PD rats after unilateral 6-OHDA-induced toxicity in the medial forebrain bundle. The drug -induced rotation test was used to validate the severity of the nigrostriatal lesion; von Frey and thermal pain tests were employed to evaluate nociceptive function. Nociception-induced cerebral blood volume (CBV) response was measured using a 4.7-T MR system. Finally, the immunohistochemical (IHC) studies were performed and the results were compared with the imaging findings from functional magnetic resonance imaging (fMRI). The grafts significantly improved drug-induced rotation behavior and increased mechanical and thermal nociceptive thresholds in PD rats. The elevation of CBV signals significantly recovered on the grafted striatum, whereas this effect was inhibited by the D2R antagonist eticlopride in each striatum. Quantitative IHC analysis revealed the transplantation markedly increased the numbers of tyrosine hydroxylase immunoreactive cells. Therefore, we concluded transplantation of rVM tissue results in anti-nociceptive effects and improves motor function. Moreover, in vivo CBV response confirmed the key role of D2R-mediated pain modulation. Therefore, we demonstrate fMRI as a reliable imaging index in evaluating the anti-nociceptive therapeutic effects of fetal rVM transplantation in the rat model of PD.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Yun-Ting Jhao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Wen-Sheng Huang
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Ma KH, Cheng CY, Chan WH, Chen SY, Kao LT, Sung CS, Hueng DY, Yeh CC. Pulsed Radiofrequency Upregulates Serotonin Transporters and Alleviates Neuropathic Pain-Induced Depression in a Spared Nerve Injury Rat Model. Biomedicines 2021; 9:biomedicines9101489. [PMID: 34680606 PMCID: PMC8533300 DOI: 10.3390/biomedicines9101489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is difficult to treat due to complex pathophysiological mechanisms. Pulsed radiofrequency (RRF) has been used widely with neuromodulation effect in refractory chronic pain treatment. A recent study found that PRF treatment may decrease chronic pain-related anxiety-depressant symptoms in patients, even though the mechanisms are unclear. Additionally, accumulated evidence has shown serotonin uptake is correlated with various neuropsychiatric diseases. Therefore, we investigated the effects and underlying mechanisms of PRF on depression-like behaviors, resulting from spared nerve injury (SNI)-induced NP. We examined the indexes of mechanical allodynia, cold allodynia, depression-like behavior, and blood cytokines by dynamic plantar aesthesiometry, acetone spray test, forced swimming test, and ProcartaPlex multiplex immunoassays in male Wistar rats, respectively. Serotonin transporters (SERTs) in rat brains were examined by using 4-[18F]-ADAM/PET imaging. We found that specific uptake ratios (SURs) of SERTs were significantly decreased in the brain regions of the thalamus and striatum in rats with SNI-induced NP and depression-like behaviors. Additionally, the decrease in SERT density was correlated with the development of a depression-like behavior indicated by the forced swimming test results and pronounced IL-6 cytokines. Moreover, we demonstrated that PRF application could modulate the descending serotoninergic pathway to relieve pain and depression behaviors.
Collapse
Affiliation(s)
- Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 115, Taiwan;
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Shih-Yu Chen
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Li-Ting Kao
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 115, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Hsu YC, Ma KH, Guo SL, Lin BF, Tsai CS, Yeh CC. The Occurrence of Pain-Induced Depression Is Different between Rat Models of Inflammatory and Neuropathic Pain. J Clin Med 2021; 10:jcm10174016. [PMID: 34501464 PMCID: PMC8432452 DOI: 10.3390/jcm10174016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Various pain conditions may be associated with depressed mood. However, the effect of inflammatory or neuropathic pain on depression-like behavior and its associated time frame has not been well established in rat models. This frontward study investigated the differences in pain behavior, depression-like behavior, and serotonin transporter (SERT) distribution in the brain between rats subjected to spared nerve injury (SNI)-induced neuropathic pain or complete Freund’s adjuvant (CFA)-induced inflammatory pain. A dynamic plantar aesthesiometer and an acetone spray test were used to evaluate mechanical and cold allodynia responses, and depression-like behavior was examined using a forced swimming test and sucrose preference test. We also investigated SERT expression by using positron emission tomography. We found that the inflammation-induced pain was less severe than neuropathic pain from days 3 to 28 after induced pain; however, the CFA-injected rats exhibited more noticeable depression-like behavior and had significantly reduced SERT expression in the brain regions (thalamus and striatum) at an early stage (on days 14, 21, and 28 in two groups of CFA-injected rats versus day 28 in SNI rats). We speculated that not only the pain response after initial injury but also the subsequent neuroinflammation may have been the crucial factors influencing depression-like behavior in rats.
Collapse
Affiliation(s)
- Yung-Chi Hsu
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
| | - Shu-Lin Guo
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Bo-Feng Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8792-3311 (ext. 17051); Fax: +886-2-8792-7127
| |
Collapse
|
7
|
Fan HC, Chang YK, Tsai JD, Chiang KL, Shih JH, Yeh KY, Ma KH, Li IH. The Association Between Parkinson's Disease and Attention-Deficit Hyperactivity Disorder. Cell Transplant 2021; 29:963689720947416. [PMID: 33028106 PMCID: PMC7784516 DOI: 10.1177/0963689720947416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While Parkinson’s disease (PD) and attention-deficit hyperactivity disorder (ADHD) are two distinct conditions, it has been hypothesized that they share several overlapping anatomical and neurochemical changes. In order to investigate that hypothesis, this study used claims data from Taiwan’s Longitudinal Health Insurance Database 2000 to provide the significant nationwide population-based evidence of an increased risk of PD among ADHD patients, and the connection between the two conditions was not the result of other comorbidities. Moreover, this study showed that the patients with PD were 2.8 times more likely to have a prior ADHD diagnosis compared with those without a prior history of ADHD. Furthermore, an animal model of ADHD was generated by neonatally injecting rats with 6-hydroxydopamine (6-OHDA). These rats were subjected to behavior tests and the 99mTc-TRODAT-1 brain imaging at the juvenile stage. Compared to control group rats, the 6-OHDA rats showed a significantly reduced specific uptake ratio in the striatum, indicating an underlying PD-linked pathology in the brains of these ADHD phenotype-expressing rats. Overall, these results support that ADHD shares a number of anatomical and neurochemical changes with PD. As such, improved knowledge of the neurochemical mechanisms underlying ADHD could result in improved treatments for various debilitating neurological disorders, including PD.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, 59084Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Medical research, 68866Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Life Sciences, 59084National Chung Hsing University, Taichung.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli
| | - Yu-Kang Chang
- Department of Medical research, 68866Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Life Sciences, 59084National Chung Hsing University, Taichung.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli
| | - Jeng-Dau Tsai
- School of Medicine, 34899Chung Shan Medical University, Taichung.,Department of Pediatrics, 34899Chung Shan Medical University Hospital, Taichung
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, 38009Kuang-Tien General Hospital, Taichung.,Department of Nutrition, Hungkuang University, Taichung
| | - Jui-Hu Shih
- Department of Pharmacy Practice, 63452Tri-Service General Hospital, Taipei.,School of Pharmacy, 71548National Defense Medical Center, Taipei
| | - Kuan-Yi Yeh
- Department of Biology and Anatomy, 71548National Defense Medical Center, Taipei
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, 71548National Defense Medical Center, Taipei
| | - I-Hsun Li
- Department of Pharmacy Practice, 63452Tri-Service General Hospital, Taipei.,School of Pharmacy, 71548National Defense Medical Center, Taipei
| |
Collapse
|
8
|
Walker M, Kuebler L, Goehring CM, Pichler BJ, Herfert K. Imaging SERT Availability in a Rat Model of L-DOPA-Induced Dyskinesia. Mol Imaging Biol 2021; 22:634-642. [PMID: 31392531 DOI: 10.1007/s11307-019-01418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The development of L-DOPA-induced dyskinesia (LID) is one of the most severe side effects of chronic L-DOPA treatment in Parkinson's disease patients. [11C]DASB positron emission tomography (PET) provides a prominent tool to visualize and quantify serotonin transporter (SERT) pathology in vivo in patients and in animal models. To evaluate the effect of chronic L-DOPA treatment on SERT availability in an animal model of LID, we performed a longitudinal PET study. PROCEDURES Rats received a unilateral 6-hydroxydopamine (6-OHDA) lesion, and striatal and extrastriatal SERT expression levels were studied with [11C]DASB, a marker of SERT availability, before and after daily treatment with L-DOPA. Dyskinesias were evaluated at different time points over a period of 21 days. RESULTS [11C]DASB binding was found to be decreased after 6-OHDA lesions in the striatum, cortex, and hippocampus 5 weeks after 6-OHDA injection in the lesioned hemisphere of the rat brain. Chronic L-DOPA priming resulted in a relative preservation of SERT availability in the lesioned and healthy hemisphere compared to baseline measurements. CONCLUSIONS Our longitudinal PET data support a preservation of SERT availability after the induction of L-DOPA-induced dyskinesia, which is in line with previous reports in dyskinetic PD patients.
Collapse
Affiliation(s)
- Michael Walker
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Laura Kuebler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Chris Marc Goehring
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany.
| |
Collapse
|
9
|
Weng SJ, Chen CFF, Huang YS, Chiu CH, Wu SC, Lin CY, Chueh SH, Cheng CY, Ma KH. Olfactory ensheathing cells improve the survival of porcine neural xenografts in a Parkinsonian rat model. Xenotransplantation 2019; 27:e12569. [PMID: 31777103 DOI: 10.1111/xen.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.
Collapse
Affiliation(s)
- Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Chih Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Ying Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
The Effect of Sertoli Cells on Xenotransplantation and Allotransplantation of Ventral Mesencephalic Tissue in a Rat Model of Parkinson's Disease. Cells 2019; 8:cells8111420. [PMID: 31718058 PMCID: PMC6912403 DOI: 10.3390/cells8111420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson’s disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.
Collapse
|
11
|
The effect of dextromethorphan use in Parkinson's disease: A 6-hydroxydopamine rat model and population-based study. Eur J Pharmacol 2019; 862:172639. [DOI: 10.1016/j.ejphar.2019.172639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
|
12
|
Huang WS, Chen GJ, Tsai TH, Cheng CY, Shiue CY, Ma KH, Yeh SHH. In vivo long-lasting alterations of central serotonin transporter activity and associated dopamine synthesis after acute repeated administration of methamphetamine. EJNMMI Res 2019; 9:92. [PMID: 31535286 PMCID: PMC6751231 DOI: 10.1186/s13550-019-0557-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background Methamphetamine (METH)-associated alterations in the striatal dopamine (DA) system or dopamine transport (DAT) have been identified in clinical and preclinical studies with positron emission tomography (PET) imaging but have not been well correlated with in vivo serotonin transporter (SERT) availability due to the lack of appropriate imaging agents to assess SERTs. N,N-dimethyl-2-(2-amino-4-[18F]-fluorophenylthio) benzylamine (4-[18F]-ADAM) has been developed by our group and validated for its high affinity and selectivity for SERTs, allowing the in vivo examination of SERT density, location, and binding function. The aims of this study were to investigate the potential of SERT imaging using 4-[18F]-ADAM PET to estimate the long-lasting effects of METH-induced serotonergic neurotoxicity, and further determine whether a correlative relationship exists between SERT availability/activity and tyrosine hydroxylase (TH) activity in various brain regions due to the long-lasting consequences of METH treatment. Results Male rats received four administrations of METH (5 or 10 mg/kg, s.c.) or saline (1 ml/kg, s.c.) at 1-h intervals. At 30 days post-administration, in vivo SERT availability and activity were measured by 4-[18F]ADAM PET imaging. In contrast to the controls, the uptake of 4-[18F]ADAM in METH-treated mice was significantly reduced in a dose-dependent manner in the midbrain, followed by the hypothalamus, thalamus, striatum, hippocampus, and frontal cortex. The regional effects of METH on TH activity were assessed by quantitative immunohistochemistry and presented as integrated optical density (IOD). A significant decrease in TH immunostaining and IOD ratios was seen in the caudate, putamen, nucleus accumbens, substantia nigra pars compacta, and substantia nigra pars reticulata in the METH-treated rats compared to controls. Conclusion The present results suggested that the long-lasting response to METH decreased the uptake of 4-[18F]-ADAM and varied regionally along with TH immunoreactivity. In addition, 4-[18F]ADAM PET could be used to detect serotonergic neuron loss and to evaluate the severity of serotonergic neurotoxicity of METH.
Collapse
Affiliation(s)
- Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, Republic of China.,Nuclear Medicine Department, Tri-Service General Hospital, Taipei, Taiwan
| | - Guann-Juh Chen
- Department of Neurological Surgery, National Defense Medical Center, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China.,Department of Neurological Surgery, Chiayi Branch, Taichung Veterans General Hospital, No. 600, Sec. 2, Shixian Rd., West District, Chiayi City, 60090, Taiwan, Republic of China
| | - Tung-Han Tsai
- Department of Neurological Surgery, National Defense Medical Center, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China
| | - Chen-Yi Cheng
- Nuclear Medicine Department, Tri-Service General Hospital, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, 10048, Taiwan, Republic of China
| | - Kuo-Hsing Ma
- Department of Anatomy and Biology, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China.
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei City, 112, Taiwan, Republic of China.
| |
Collapse
|
13
|
Regulation of Noise-Induced Loss of Serotonin Transporters with Resveratrol in a Rat Model Using 4-[ 18F]-ADAM/Small-Animal Positron Emission Tomography. Molecules 2019; 24:molecules24071344. [PMID: 30959762 PMCID: PMC6480549 DOI: 10.3390/molecules24071344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5-HT) plays a crucial role in modulating the afferent fiber discharge rate in the inferior colliculus, auditory cortex, and other nuclei of the ascending auditory system. Resveratrol, a natural polyphenol phytoalexin, can inhibit serotonin transporters (SERT) to increase synaptic 5-HT levels. In this study, we investigated the effects of resveratrol on noise-induced damage in the serotonergic system. Male Sprague-Dawley rats were anaesthetized and exposed to an 8-kHz tone at 116 dB for 3.5 h. Resveratrol (30 mg/kg, intraperitoneal injection [IP]) and citalopram (20 mg/kg, IP), a specific SERT inhibitor used as a positive control, were administered once a day for four consecutive days, with the first treatment occurring 2 days before noise exposure. Auditory brainstem response testing and positron emission tomography (PET) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, a specific radioligand for SERT) were used to evaluate functionality of the auditory system and integrity of the serotonergic system, respectively, before and after noise exposure. Finally, immunohistochemistry was performed 1 day after the last PET scan. Our results indicate that noise-induced serotonergic fiber loss occurred in multiple brain regions including the midbrain, thalamus, hypothalamus, striatum, auditory cortex, and frontal cortex. This noise-induced damage to the serotonergic system was ameliorated in response to treatment with resveratrol and citalopram. However, noise exposure increased the hearing threshold in the rats regardless of drug treatment status. We conclude that resveratrol has protective effects against noise-induced loss of SERT.
Collapse
|
14
|
Hazari PP, Pandey A, Chaturvedi S, Mishra AK. New Trends and Current Status of Positron-Emission Tomography and Single-Photon-Emission Computerized Tomography Radioligands for Neuronal Serotonin Receptors and Serotonin Transporter. Bioconjug Chem 2017; 28:2647-2672. [PMID: 28767225 DOI: 10.1021/acs.bioconjchem.7b00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The critical role of serotonin (5-hydroxytryptamine; 5-HT) and its receptors (5-HTRs) in the pathophysiology of diverse neuropsychiatric and neurodegenerative disorders render them attractive diagnostic and therapeutic targets for brain disorders. Therefore, the in vivo assessment of binding of 5-HT receptor ligands under a multitude of physiologic and pathologic scenarios may support more-accurate identification of disease and its progression and the patient's response to therapy as well as the screening of novel therapeutic strategies. The present Review aims to focus on the current status of radioligands used for positron-emission tomography (PET) and single-photon-emission computerized tomography (SPECT) imaging of human brain serotonin receptors. We further elaborate upon and emphasize the attributes that qualify a radioligand for theranostics on the basis of its frequency of use in clinics, its benefit to risk assessment in humans, and its continuous evolution, along with the major limitations.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Ankita Pandey
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
15
|
Fully automated one-pot two-step synthesis of 4-[ 18 F]-ADAM, a potent serotonin transporter imaging agent. Appl Radiat Isot 2016; 110:8-15. [DOI: 10.1016/j.apradiso.2015.12.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 11/19/2022]
|
16
|
Adaptive down-regulation of the serotonin transporter in the 6-hydroxydopamine-induced rat model of preclinical stages of Parkinson's disease and after chronic pramipexole treatment. Neuroscience 2016; 314:22-34. [PMID: 26628402 DOI: 10.1016/j.neuroscience.2015.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 12/23/2022]
Abstract
Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15 μg/2.5 μl) was administered bilaterally into the CP. PRA (1mg/kg) was injected subcutaneously twice a day for 2 weeks. Serotonergic and dopaminergic neurons of the dorsal raphe (DR) were immunostained for tryptophan hydroxylase and tyrosine hydroxylase, respectively, and were counted stereologically. Binding of [(3)H]GBR 12,935 to the dopamine transporter (DAT) and [(3)H]citalopram to SERT was analyzed autoradiographically. Intrastriatal 6-OHDA injections decreased the number of dopaminergic, but not serotonergic neurons in the DR. 6-OHDA reduced the DAT binding in the CP, and SERT binding in the nigrostriatal system (CP, substantia nigra (SN)), limbic system (ventral tegmental area (VTA), nucleus accumbens (NAC), amygdala, prefrontal cortex (PFCX), habenula, hippocampus) and DR. A significant positive correlation was found between DAT and SERT binding in the CP. Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded.
Collapse
|
17
|
Weng SJ, Li IH, Huang YS, Chueh SH, Chou TK, Huang SY, Shiue CY, Cheng CY, Ma KH. KA-bridged transplantation of mesencephalic tissue and olfactory ensheathing cells in a Parkinsonian rat model. J Tissue Eng Regen Med 2015; 11:2024-2033. [PMID: 26510988 DOI: 10.1002/term.2098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 11/07/2022]
Abstract
The pathology of Parkinson's disease (PD) results mainly from nigrostriatal pathway damage. Unfortunately, commonly used PD therapies do not repair the disconnected circuitry. It has been reported that using kainic acid (KA, an excitatory amino acid) in bridging transplantation may be useful to generate an artificial tract and reconstruct the nigrostriatal pathway in 6-hydroxydopamine (6-OHDA) lesioned rats. In this study, we used KA bridging and a co-graft of rat olfactory ensheathing cells (OECs) and rat E14 embryonic ventral mesencephalic (VM) tissue to restore the nigrostriatal pathway of the PD model rats. The methamphetamine-induced rotational behaviour, 4-[18 F]-ADAM (a selectively serotonin transporter radioligand)/micro-PET imaging, and immunohistochemistry were used to assess the effects of the transplantation. At 9 weeks post-grafting in PD model rats, the results showed that the PD rats undergoing VM tissue and OECs co-grafts (VM-OECs) exhibited better motor recovery compared to the rats receiving VM tissue transplantation only. The striatal uptake of 4-[18 F]-ADAM and tyrosine hydroxylase immunoreactivity (TH-ir) of the grafted area in the VM-OECs group were also more improved than those of the VM alone group. These results suggested that OECs may enhance the survival of the grafted VM tissue and facilitate the recovery of motor function after VM transplantation. Moreover, OECs possibly promote the elongation of dopaminergic and serotonergic axon in the bridging graft. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ta-Kai Chou
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
18
|
Chiu CH, Siow TY, Weng SJ, Hsu YH, Huang YS, Chang KW, Cheng CY, Ma KH. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study. PLoS One 2015; 10:e0138431. [PMID: 26378923 PMCID: PMC4574734 DOI: 10.1371/journal.pone.0138431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), also known as “Ecstasy”, is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI). Rats were injected subcutaneously six times with MDMA (5 mg/kg) or saline once daily. Eight days after the last injection, manganese ions (Mn2+) were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB), and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tiing-Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hua Hsu
- Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
19
|
Chiu CH, Li IH, Weng SJ, Huang YS, Wu SC, Chou TK, Huang WS, Liao MH, Shiue CY, Cheng CY, Ma KH. PET Imaging of Serotonin Transporters With 4-[(18)F]-ADAM in a Parkinsonian Rat Model With Porcine Neural Xenografts. Cell Transplant 2015; 25:301-11. [PMID: 25994923 DOI: 10.3727/096368915x688236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by a loss of dopaminergic neurons in the nigrostriatal pathway. Apart from effective strategies to halt the underlying neuronal degeneration, cell replacement now offers novel prospects for PD therapy. Porcine embryonic neural tissue has been considered an alternative source to human fetal grafts in neurodegenerative disorders because its use avoids major practical and ethical issues. This study was undertaken to evaluate the effects of embryonic day 27 (E27) porcine mesencephalic tissue transplantation in a PD rat model using animal positron emission tomography (PET) coupled with 4-[(18)F]-ADAM, a serotonin transporter (SERT) imaging agent. The parkinsonian rat was induced by injecting 6-hydroxydopamine into the medial forebrain bundle (MFB) of the right nigrostriatal pathway. The apomorphine-induced rotation behavioral test and 4-[(18)F]-ADAM/animal PET scanning were carried out following 6-OHDA lesioning. At the second week following 6-OHDA lesioning, the parkinsonian rat rotates substantially on apomorphine-induced contralateral turning. In addition, the mean striatal-specific uptake ratio (SUR) of 4-[(18)F]-ADAM decreased by 44%. After transplantation, the number of drug-induced rotations decreased markedly, and the mean SUR of 4-[(18)F]-ADAM and the level of SERT immunoreactivity (SERT-ir) in striatum were partially restored. The mean SUR level was restored to 71% compared to that for the contralateral intact side, which together with the abundant survival of tyrosine hydroxylase (TH) neurons accounted for functional recovery at the fourth week postgraft. In regard to the extent of donor-derived cells, we found the neurons of the xenografts from E27 transgenic pigs harboring red fluorescent protein (RFP) localized with TH-ir cells and SERT-ir in the grafted area. Thus, transplanted E27 porcine mesencephalic tissue may restore dopaminergic and serotonergic systems in the parkinsonian rat. The 4-[(18)F]-ADAM/animal PET can be used to detect serotonergic neuron loss in PD and monitor the efficacy of therapy.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bäck S, Raki M, Tuominen RK, Raasmaja A, Bergström K, Männistö PT. High correlation between in vivo [123I]β-CIT SPECT/CT imaging and post-mortem immunohistochemical findings in the evaluation of lesions induced by 6-OHDA in rats. EJNMMI Res 2013; 3:46. [PMID: 23758882 PMCID: PMC3689076 DOI: 10.1186/2191-219x-3-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/20/2013] [Indexed: 01/31/2023] Open
Abstract
Background 6-Hydroxydopamine (6-OHDA) is widely used in pre-clinical animal studies to induce degeneration of midbrain dopamine neurons to create animal models of Parkinson's disease. The aim of our study was to evaluate the potential of combined single-photon emission computed tomography/computed tomography (SPECT/CT) for the detection of differences in 6-OHDA-induced partial lesions in a dose- and time-dependent manner using the dopamine transporter (DAT) ligand 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane ([123I]β-CIT). Methods Rats were unilaterally lesioned with intrastriatal injections of 8 or 2 × 10 μg 6-OHDA. At 2 or 4 weeks post-lesion, 40 to 50 MBq [123I]β-CIT was administered intravenously and rats were imaged with small-animal SPECT/CT under isoflurane anesthesia. The striatum was delineated and mean striatal activity in the lesioned side was compared to the intact side. After the [123I]β-CIT SPECT/CT scan, the rats were tested for amphetamine-induced rotation asymmetry, and their brains were immunohistochemically stained for DAT and tyrosine hydroxylase (TH). The fiber density of DAT- and TH-stained striata was estimated, and TH-immunoreactive cells in the rat substantia nigra pars compacta (SNpc) were stereologically counted. Results The striatal uptake of [123I]β-CIT differed significantly between the lesion groups and the results were highly correlated to both striatal DAT- and TH-immunoreactive fiber densities and to TH-immunoreactive cell numbers in the rat SNpc. No clear progression of the lesion could be seen. Conclusions [123I]β-CIT SPECT/CT is a valuable tool in predicting the condition of the rat midbrain dopaminergic pathway in the unilateral partial 6-OHDA lesion model of Parkinson's disease and it offers many advantages, allowing repeated non-invasive analysis of living animals.
Collapse
Affiliation(s)
- Susanne Bäck
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, PO Box 56 (Viikinkaari 5E), Helsinki FI-00014, Finland.
| | | | | | | | | | | |
Collapse
|