1
|
Paisey SJ, Jones LR, Harrison DJ, Drummond NJ, Edwards OZ, Canham MA, Roberton VH, Marshall C, Parker G, Hills R, Rosser AE, Lane EL, Dunnett SB, Kunath T, Assaf Y, Lelos MJ. Imaging of human stem cell-derived dopamine grafts correlates with behavioural recovery and reveals microstructural brain changes. Neurobiol Dis 2025; 209:106910. [PMID: 40233853 DOI: 10.1016/j.nbd.2025.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Cell therapy is a promising therapeutic intervention for Parkinson's disease (PD) and is currently undergoing safety and efficacy testing in clinical trials worldwide. The goals of this project were (1) to determine whether [18F]Fluorodopa or [18F]Fallypride imaging correlates robustly with functional recovery; and (2) to explore whether diffusion-weighted MR imaging (DWI) could detect graft-induced cytoarchitectural changes in the host brain. hfVM and hESC-derived dopamine precursor cells were transplanted into the 6-OHDA lesioned rat striatum. Tests of motor function and PET and MR imaging were conducted up to 6 months post-transplantation. Our data demonstrate that [18F]Fluorodopa imaging identified presynaptic DA synthesis from hfVM and hESC-derived dopaminergic grafts and [18F]Fallypride imaging confirmed occupancy and normalisation of D2/D3 receptor expression in the grafted hemisphere. In hfVM grafted rats, [18F]Fluorodopa binding correlated robustly with motor recovery on a range of drug-induced and drug-free behavioural tasks. In hESC-DA grafted rats, improvements in [18F]Fluorodopa PET imaging signals preceded recovery of naturalistic motor behaviours. DWI revealed widespread graft-mediated microstructural changes in the rodent brain, which did not identify graft placement, but instead may reflect remodelling of neuroglia. These data further our understanding of the impact of dopaminergic grafts on brain cytoarchitecture and the potential of these radioligands to predict graft efficacy may aid in the translation of therapeutics from preclinical to clinical settings.
Collapse
Affiliation(s)
- Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Lucy R Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - David J Harrison
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Nicola J Drummond
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Olivia Z Edwards
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Maurice A Canham
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria H Roberton
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Greg Parker
- Independent Imaging Consultant, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rachel Hills
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Anne E Rosser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, UK
| | - Stephen B Dunnett
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yaniv Assaf
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Biochemistry Neurobiology Biophysics, Faculty of Life Sciences, Tel Aviv University, Israel
| | - Mariah J Lelos
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
2
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Lelos MJ. Investigating cell therapies in animal models of Parkinson's and Huntington's disease: Current challenges and considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:159-189. [PMID: 36424091 DOI: 10.1016/bs.irn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.
Collapse
Affiliation(s)
- Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
Garcia Jareño P, Bartley OJM, Precious SV, Rosser AE, Lelos MJ. Challenges in progressing cell therapies to the clinic for Huntington's disease: A review of the progress made with pluripotent stem cell derived medium spiny neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:1-48. [PMID: 36424090 DOI: 10.1016/bs.irn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.
Collapse
Affiliation(s)
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Cardiff University Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Choompoo N, Bartley OJM, Precious SV, Vinh NN, Schnell C, Garcia A, Roberton VH, Williams NM, Kemp PJ, Kelly CM, Rosser AE. Induced pluripotent stem cells derived from the developing striatum as a potential donor source for cell replacement therapy for Huntington disease. Cytotherapy 2020; 23:111-118. [PMID: 33246883 PMCID: PMC7822401 DOI: 10.1016/j.jcyt.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022]
Abstract
Background Cell replacement therapy (CRT) for Huntington disease (HD) requires a source of striatal (STR) progenitors capable of restoring the function lost due to STR degeneration. Authentic STR progenitors can be collected from the fetal putative striatum, or whole ganglionic eminence (WGE), but these tissues remain impractical for widespread clinical application, and alternative donor sources are required. Here we begin exploring the possibility that induced pluripotent stem cells (iPSC) derived from WGE may retain an epigenetic memory of their tissue of origin, which could enhance their ability to differentiate into STR cells. Results We generate four iPSC lines from human WGE (hWGE) and establish that they have a capacity similar to human embryonic stem cells with regard to their ability to differentiate toward an STR phenotype, as measured by expression and demethylation of key STR genes, while maintaining an overall different methylome. Finally, we demonstrate that these STR-differentiated hWGE iPSCs share characteristics with hWGE (i.e., authentic STR tissues) both in vitro and following transplantation into an HD model. Overall, iPSCs derived from human WGE show promise as a donor source for CRT for HD.
Collapse
Affiliation(s)
- Narawadee Choompoo
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK; Department of Anatomy, Faculty of Medical Science, Naresuan University, Phisanulok, Thailand
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Ngoc-Nga Vinh
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Christian Schnell
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Ana Garcia
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Nigel M Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Paul J Kemp
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Claire M Kelly
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK; Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Besusso D, Schellino R, Boido M, Belloli S, Parolisi R, Conforti P, Faedo A, Cernigoj M, Campus I, Laporta A, Bocchi VD, Murtaj V, Parmar M, Spaiardi P, Talpo F, Maniezzi C, Toselli MG, Biella G, Moresco RM, Vercelli A, Buffo A, Cattaneo E. Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease. Stem Cell Reports 2020; 14:876-891. [PMID: 32302555 PMCID: PMC7220987 DOI: 10.1016/j.stemcr.2020.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023] Open
Abstract
Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Dario Besusso
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy.
| | - Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology of CNR, Segrate, Milan, 20090 Italy; PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Andrea Faedo
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Manuel Cernigoj
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Angela Laporta
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy
| | - Valentina Murtaj
- PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy; PhD Program in Neuroscience, Department of Medicine and Surgery, University of Milano - Bicocca, Monza MB, 20900 Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Paolo Spaiardi
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Francesca Talpo
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Claudia Maniezzi
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | | | - Gerardo Biella
- Department of Biology and Biotechnologies, University of Pavia, Pavia, 27100 Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology of CNR, Segrate, Milan, 20090 Italy; PET and Nuclear Medicine Unit, San Raffaele Scientific Institute, Milan 20132, Italy; Department of Medicine and Surgery, University of Milano - Bicocca, Monza MB, 20900 Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10124, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy.
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, 20133 Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, 20122 Italy.
| |
Collapse
|
8
|
Harrison DJ, Roberton VH, Vinh NN, Brooks SP, Dunnett SB, Rosser AE. The Effect of Tissue Preparation and Donor Age on Striatal Graft Morphology in the Mouse. Cell Transplant 2019; 27:230-244. [PMID: 29637815 PMCID: PMC5898691 DOI: 10.1177/0963689717744788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease in which striatal medium spiny neurons (MSNs) are lost. Neuronal replacement therapies aim to replace MSNs through striatal transplantation of donor MSN progenitors, which successfully improve HD-like deficits in rat HD models and have provided functional improvement in patients. Transplants in mouse models of HD are more variable and have lower cell survival than equivalent rat grafts, yet mice constitute the majority of transgenic HD models. Improving the quality and consistency of mouse transplants would open up access to this wider range of rodent models and facilitate research to increase understanding of graft mechanisms, which is essential to progress transplantation as a therapy for HD. Here we determined how donor age, cell preparation, and donor/host strain choice influenced the quality of primary embryonic grafts in quinolinic acid lesion mouse models of HD. Both a within-strain (W-S) and a between-strain (B-S) donor/host paradigm were used to compare transplants of donor tissues derived from mice at embryonic day E12 and E14 prepared either as dissociated suspensions or as minimally manipulated tissue pieces (TP). Good graft survival was observed, although graft volume and cellular composition were highly variable. The effect of cell preparation on grafts differed significantly depending on donor age, with E14 cell suspensions yielding larger grafts compared to TP. Conversely, TP were more effective when derived from E12 donor tissue. A W-S model produced larger grafts with greater MSN content, and while high levels of activated microglia were observed across all groups, a greater number was found in B-S transplants. In summary, we show that the effect of tissue preparation on graft morphology is contingent on the age of donor tissue used. The presence of microglial activation in all groups highlights the host immune response as an important consideration in mouse transplantation.
Collapse
Affiliation(s)
- David J Harrison
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Victoria H Roberton
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon P Brooks
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephen B Dunnett
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Noakes Z, Keefe F, Tamburini C, Kelly CM, Cruz Santos M, Dunnett SB, Errington AC, Li M. Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain. Stem Cell Reports 2019; 12:191-200. [PMID: 30661995 PMCID: PMC6373547 DOI: 10.1016/j.stemcr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/28/2023] Open
Abstract
Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine. hPSCs differentiate into cortical and striatal interneuron-like cells in vitro They present mature electrophysiological and morphological properties in vitro They express striatal interneuron subtype markers upon transplantation in rat brain hPSC-interneuron-like cells adopt region-specific morphologies in vivo
Collapse
Affiliation(s)
- Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Claire M Kelly
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Maria Cruz Santos
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - Adam C Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
10
|
Golas MM. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 2018; 209:179-196. [PMID: 30031060 DOI: 10.1016/j.lfs.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, DK-8000 Aarhus C, Denmark; Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
11
|
Dissection and Preparation of Human Primary Fetal Ganglionic Eminence Tissue for Research and Clinical Applications. Methods Mol Biol 2018; 1780:573-583. [PMID: 29856036 DOI: 10.1007/978-1-4939-7825-0_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we describe detailed dissection and enzymatic dissociation protocols for the ganglionic eminences from the developing human brain to generate viable quasi-single cell suspensions for subsequent use in transplantation or cell culture. These reliable and reproducible protocols can provide tissue for use in the study of the developing human brain, as well as for the preparation of donor cells for transplantation in Huntington's disease (HD). For use in the clinic as a therapy for HD, the translation of these protocols from the research laboratory to the GMP suite is described, including modification to reagents used and appropriate monitoring and tissue release criteria.
Collapse
|
12
|
Abstract
In Huntington's disease (HD), the medium spiny projection neurons of the neostriatum degenerate early in the course of the disease. While genetic mutant models of HD provide an excellent resource for studying the molecular and cellular effects of the inherited polyQ huntingtin mutation, they do not typically present with overt atrophy of the basal ganglia, despite this being a major pathophysiological hallmark of the disease. By contrast, excitotoxic lesion models, which use quinolinic acid to specifically target the striatal projection neurons, are employed to study the functional consequences of striatal atrophy and to investigate potential therapeutic interventions that target the neuronal degeneration. This chapter provides a detailed guide to the generation of excitotoxic lesion models of HD in rats.
Collapse
|