1
|
Karami Y, Ehtiati S, Ghasemi H, Rafiee M, Zamani Sani M, Hosseini SE, Moradi Kazerouni H, Movahedpour A, Aiiashi S, Khatami SH. Non-coding RNA biosensors for early detection of brain cancer. Clin Chim Acta 2025; 566:120041. [PMID: 39561887 DOI: 10.1016/j.cca.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Brain cancer remains a formidable challenge with limited treatment options. Non-coding RNAs (ncRNAs) have emerged as promising biomarkers due to their dysregulation in tumorigenesis. This review explores the potential of biosensors for early detection of brain cancer by targeting ncRNAs. We discuss the classification and functions of ncRNAs, emphasizing their involvement in key cancer-related processes. Additionally, we delve into recent advancements in biosensor technology, focusing on their ability to accurately detect specific ncRNA biomarkers associated with brain cancer. Our findings underscore the potential of biosensors to revolutionize brain cancer diagnosis, enabling personalized medicine and improving patient outcomes. Future research should focus on refining biosensor technology and expanding their clinical application.
Collapse
Affiliation(s)
- Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences University of Wyoming 1174 Snowy Range Road Laramie, WY 82070, USA
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Edris Hosseini
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nie L, Jiang T. CircNUP98 promotes the malignant behavior of glioma cells through the miR-520f-3p/ELK4 axis. Int J Dev Neurosci 2024; 84:581-593. [PMID: 38923578 DOI: 10.1002/jdn.10355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Glioma, a formidable form of brain cancer, poses significant challenges in terms of treatment and prognosis. Circular RNA nucleoporin 98 (circNUP98) has emerged as a potential regulator in various cancers, yet its role in glioma remains unclear. Here, we elucidate the functional role of circNUP98 in glioma cell proliferation, invasion, and migration, shedding light on its therapeutic implications. Glioma cells were subjected to si-NUP98 transfection, followed by assessments of cell viability, proliferation, invasion, and migration. Subcellular localization of circNUP98 was determined, and its downstream targets were identified. We delineated the binding relationships between circNUP98 and microRNA (miR)-520f-3p, as well as between miR-520f-3p and ETS transcription factor ELK4 (ELK4). The expression levels of circNUP98/miR-520f-3p/ELK4 were quantified. Our findings demonstrated that circNUP98 was upregulated in glioma cells, and its inhibition significantly attenuated glioma cell proliferation, invasion, and migration. Mechanistically, circNUP98 functioned as a sponge for miR-520f-3p, thereby relieving the inhibitory effect of miR-520f-3p on ELK4. Moreover, inhibition of miR-520f-3p or overexpression of ELK4 partially rescued the suppressive effect of circNUP98 knockdown on glioma cell behaviors. In summary, our study unveils that circNUP98 promotes glioma cell progression via the miR-520f-3p/ELK4 axis, offering novel insights into the therapeutic targeting of circNUP98 in glioma treatment.
Collapse
Affiliation(s)
- Liangqin Nie
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo City, China
| | | |
Collapse
|
3
|
Zhou X, Shao F, Xie Y, Zhang C. KRIT1 could serve as a prognostic biomarker for glioma patients. Asian J Surg 2024; 47:2247-2249. [PMID: 38403546 DOI: 10.1016/j.asjsur.2024.01.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Xiaozhu Zhou
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Fanglin Shao
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yujie Xie
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Lou S, Zhang J, Zhao S, Lou G. m 6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway. J Transl Med 2024; 22:113. [PMID: 38281945 PMCID: PMC10823642 DOI: 10.1186/s12967-024-04929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ovarian cancer poses a serious threat to women's health. Due to the difficulty of early detection, most patients are diagnosed with advanced-stage disease or peritoneal metastasis. We found that LncRNA MEG3 is a novel tumor suppressor, but its role in tumor occurrence and development is still unclear. METHODS We investigated the expression level of MEG3 in pan-cancer through bioinformatics analysis, especially in gynecological tumors. Function assays were used to detect the effect of MEG3 on the malignant phenotype of ovarian cancer. RIP, RNA pull-down, MeRIP-qPCR, actinomycin D test were carried out to explore the m6A methylation-mediated regulation on MEG3. Luciferase reporter gene assay, PCR and Western blot were implemented to reveal the potential mechanism of MEG3. We further confirmed the influence of MEG3 on tumor growth in vivo by orthotopic xenograft models and IHC assay. RESULTS In this study, we discovered that MEG3 was downregulated in various cancers, with the most apparent downregulation in ovarian cancer. MEG3 inhibited the proliferation, migration, and invasion of ovarian cancer cells. Overexpression of MEG3 suppressed the degradation of VASH1 by negatively regulating miR-885-5p, inhibiting the ovarian cancer malignant phenotype. Furthermore, we demonstrated that MEG3 was regulated at the posttranscriptional level. YTHDF2 facilitated MEG3 decay by recognizing METTL3‑mediated m6A modification. Compared with those injected with vector control cells, mice injected with MEG3 knockdown cells showed larger tumor volumes and faster growth rates. CONCLUSION We demonstrated that MEG3 is influenced by METTL3/YTHDF2 methylation and restrains ovarian cancer proliferation and metastasis by binding miR-885-5p to increase VASH1 expression. MEG3 is expected to become a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, 150007, Heilongjiang, China
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shenghan Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jian Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shilu Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
5
|
Pavlou S, Foskolou S, Patikas N, Field SF, Papachristou EK, Santos CD, Edwards AR, Kishore K, Ansari R, Rajan SS, Fernandes HJR, Metzakopian E. CRISPR-Cas9 genetic screen leads to the discovery of L-Moses, a KAT2B inhibitor that attenuates Tunicamycin-mediated neuronal cell death. Sci Rep 2023; 13:3934. [PMID: 36894612 PMCID: PMC9998435 DOI: 10.1038/s41598-023-31141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Accumulation of aggregated and misfolded proteins, leading to endoplasmic reticulum stress and activation of the unfolded protein response, is a hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Genetic screens are powerful tools that are proving invaluable in identifying novel modulators of disease associated processes. Here, we performed a loss-of-function genetic screen using a human druggable genome library, followed by an arrayed-screen validation, in human iPSC-derived cortical neurons. We identified and genetically validated 13 genes, whose knockout was neuroprotective against Tunicamycin, a glycoprotein synthesis inhibitor widely used to induce endoplasmic reticulum stress. We also demonstrated that pharmacological inhibition of KAT2B, a lysine acetyltransferase identified by our genetic screens, by L-Moses, attenuates Tunicamycin-mediated neuronal cell death and activation of CHOP, a key pro-apoptotic member of the unfolded protein response in both cortical and dopaminergic neurons. Follow-up transcriptional analysis suggested that L-Moses provided neuroprotection by partly reversing the transcriptional changes caused by Tunicamycin. Finally, L-Moses treatment attenuated total protein levels affected by Tunicamycin, without affecting their acetylation profile. In summary, using an unbiased approach, we identified KAT2B and its inhibitor, L-Moses, as potential therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sofia Pavlou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Clive D' Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sandeep S Rajan
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
6
|
Xu G, Li C, Di Z, Yang Y, Liang L, Yuan Q, Yang Q, Dong X, Xu S, Wu G. Development of the expression and prognostic significance of m 5 C-related LncRNAs in breast cancer. Cancer Med 2023; 12:7667-7681. [PMID: 36464884 PMCID: PMC10067052 DOI: 10.1002/cam4.5500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/02/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND 5-Methylcytosine (m5C) methylation is a major epigenetic RNA modification and is closely related to tumorigenesis in various cancers. This study aimed to explore the prognostic value of m5C-related lncRNAs in breast cancer. METHODS Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. First, we performed differentially expressed gene (DEG) analysis and constructed a PPI network for the 12 m5C regulators. Then, we identified the m5C-related LncRNAs by the "cor. test." An m5C-related lncRNA prognostic risk signature was developed using univariate Cox regression and Lasso-penalized Cox regression analyses. The model's performance was determined using Kaplan-Meier (KM) survival analysis and ROC curves. Finally, a nomogram was constructed for clinical application in evaluating patients with BRCA. We also researched the drug sensitivity of signature lncRNAs and immune cell infiltration. Finally, we validated the expression of the signature lncRNAs through qRT-PCR in a breast cancer cell line and a breast epithelial cell line. RESULTS Overall, we constructed an 11-lncRNA risk score signature based on the lncRNAs associated with m5C regulators. According to the median risk score, we divided BRCA patients into high- and low-risk groups. The prognostic risk signature displayed excellent accuracy and demonstrated sufficient independence from other clinical characteristics. The immune cell infiltration analysis showed that the prognostic risk signature was related to the infiltration of immune cell subtypes. Drug sensitivity proved that our prognostic risk signature potentially has therapeutic value. CONCLUSIONS The m5C-related lncRNA signature reliably predicted the prognosis of breast cancer patients and may provide new insight into the breast cancer tumor immune microenvironment.
Collapse
Affiliation(s)
- Gaoran Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Chengxin Li
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ziyang Di
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yalong Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianqian Yuan
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qian Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xingxing Dong
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Siguang Xu
- Xinxiang Medical CollegeXinxiang Medical UniversityXinxiangChina
| | - Gaosong Wu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Zhu X, Chen D, Sun Y, Yang S, Wang W, Liu B, Gao P, Li X, Wu L, Ma S, Lin W, Ma J, Yan D. LncRNA WEE2-AS1 is a diagnostic biomarker that predicts poor prognoses in patients with glioma. BMC Cancer 2023; 23:120. [PMID: 36747161 PMCID: PMC9901081 DOI: 10.1186/s12885-023-10594-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glioma is characterized by high morbidity, high mortality, and poor prognosis. Despite tremendous advances in the treatment of glioma, the prognosis of patients with glioma is still unsatisfactory. There is an urgent need to discover novel molecular markers that effectively predict prognosis in patients with glioma. The investigation of the role of WEE2-AS1 in various tumors is an emerging research field, but the biological function and prognostic value of WEE2-AS1 in glioma have rarely been reported. This study aimed to assess the value of WEE2-AS1 as a potential prognostic marker of glioma. METHODS Gene expression (RNA-Seq) data of patients with glioma were extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. The Wilcoxon rank sum test was used to analyze the expression of WEE2-AS1 in the cells and tissues of glioma. The Kruskal-Wallis rank sum test, Wilcoxon rank sum test, and logistic regression were used to evaluate the relationship between clinical variables and expression of WEE2-AS1. Cox regression analysis and the Kaplan-Meier method were used to evaluate the prognostic factors in glioma. A nomogram based on Cox multivariate analysis was used to predict the impact of WEE2-AS1 on glioma prognosis. Gene Set Enrichment Analysis (GSEA) was used to identify key WEE2-AS1-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between WEE2-AS1 expression and immune cell infiltration levels. RESULTS We found that WEE2-AS1 was overexpressed in a variety of cancers, including glioma. High expression of WEE2-AS1 was associated with glioma progression. We determined that the expression of WEE2-AS1 might be an independent risk factor for the survival and prognosis of patients with glioma. We further observed that the mechanism of WEE2-AS1-mediated tumorigenesis involved neuroactive ligand-receptor interaction, cell cycle, and the infiltration of immune cells into the glioma microenvironment. CONCLUSION These findings demonstrate that WEE2-AS1 is a promising biomarker for the diagnosis and prognosis of patients with glioma. An increased understanding of its effects on the regulation of cell growth may lead to the development of clinical applications that improve the prognostic status of patients with glioma.
Collapse
Affiliation(s)
- Xuqiang Zhu
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Di Chen
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Yiyu Sun
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, School of Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Shuo Yang
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Weiguang Wang
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Bing Liu
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Peng Gao
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Xueyuan Li
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Lixin Wu
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Siqi Ma
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Wenyang Lin
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Jiwei Ma
- grid.493088.e0000 0004 1757 7279Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100 Henan Shanghai, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Sarfaraz N, Somarowthu S, Bouchard MJ. The interplay of long noncoding RNAs and hepatitis B virus. J Med Virol 2023; 95:e28058. [PMID: 35946066 DOI: 10.1002/jmv.28058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023]
Abstract
Hepatitis B Virus (HBV) infections remain a major global health burden with an estimated 296 million people living with a chronic infection and 884,000 HBV-related deaths annually. Notably, patients with a chronic hepatitis B (CHB) infection are at a 30-fold greater risk of developing hepatocellular carcinoma (HCC), the most common type of primary liver cancer, which is the 3rd deadliest cancer worldwide. Several groups have assessed HBV-related aberrant expression of host-cell long noncoding RNAs (lncRNAs) and how altered expression of specific lncRNAs affects HBV replication and progression to associated disease states. Given the challenges in establishing effective HBV models and analyzing transcriptomic data, this review focuses on lncRNA expression data primarily collected from clinical patient samples and primary human hepatocytes, with the subsequent mechanism of action analysis in cell lines or other model systems. Ultimately, understanding HBV-induced lncRNA-expression dysregulation could lead to new treatments and biomarkers for HBV infection and its associated diseases.
Collapse
Affiliation(s)
- Nima Sarfaraz
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
10
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
11
|
Samudh N, Shrilall C, Arbuthnot P, Bloom K, Ely A. Diversity of Dysregulated Long Non-Coding RNAs in HBV-Related Hepatocellular Carcinoma. Front Immunol 2022; 13:834650. [PMID: 35154157 PMCID: PMC8831247 DOI: 10.3389/fimmu.2022.834650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Infection with the hepatitis B virus (HBV) continues to pose a major threat to public health as approximately 292 million people worldwide are currently living with the chronic form of the disease, for which treatment is non-curative. Chronic HBV infections often progress to hepatocellular carcinoma (HCC) which is one of the world’s leading causes of cancer-related deaths. Although the process of hepatocarcinogenesis is multifaceted and has yet to be fully elucidated, several studies have implicated numerous long non-coding RNAs (lncRNAs) as contributors to the development of HCC. These host-derived lncRNAs, which are often dysregulated as a consequence of viral infection, have been shown to function as signals, decoys, guides, or scaffolds, to modulate gene expression at epigenetic, transcriptional, post-transcriptional and even post-translational levels. These lncRNAs mainly function to promote HBV replication and oncogene expression or downregulate tumor suppressors. Very few lncRNAs are known to suppress tumorigenesis and these are often downregulated in HCC. In this review, we describe the mechanisms by which lncRNA dysregulation in HBV-related HCC promotes tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Nazia Samudh
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Creanne Shrilall
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits/South African Medical Research Council (SAMRC) Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Jia G, Wang Y, Lin C, Lai S, Dai H, Wang Z, Dai L, Su H, Song Y, Zhang N, Feng Y, Tang B. LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2. J Exp Clin Cancer Res 2021; 40:299. [PMID: 34551796 PMCID: PMC8459495 DOI: 10.1186/s13046-021-02090-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mounting evidence has suggested the essential role of long non-coding RNAs (lncRNAs) in a plethora of malignant tumors, including hepatocellular carcinoma. However, the underlyling mechanisms of lncRNAs remain unidentified in HCC. The present work was aimed to explore the regulatory functions and mechanisms of LncRNA LNCAROD in HCC progression and chemotherapeutic response. METHODS The expression of LNCAROD in HCC tissues and cell lines were detected by quantitative reverse transcription PCR (qPCR). Cancer cell proliferation, migration, invasion, and chemoresistance were evaluated by cell counting kit 8 (CCK8), colony formation, transwell, and chemosensitivity assays. Methylated RNA immunoprecipitation qRCR (MeRIP-qPCR) was used to determine N6-methyladenosine (m6A) modification level. RNA immunoprecipitation (RIP) and RNA pull down were applied to identify the molecular sponge role of LNCAROD for modulation of miR-145-5p via the competing endogenous RNA (ceRNA) mechanism, as well as the interaction between LNCAROD and serine-and arginine-rich splicing factor 3 (SRSF3). The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and LNCAROD was also identified by RIP assay. Gain- or-loss-of-function assays were used to identify the function and underlying mechanisms of LNCAROD in HCC. RESULTS We found that LNCAROD was significantly upregulated and predicted a poorer prognosis in HCC patients. LNCAROD upregulation was maintained by increased m6A methylation-mediated RNA stability. LNCAROD significantly promoted HCC cell proliferation, migration, invasion, and chemoresistance both in vitro and in vivo. Furthermore, mechanistic studies revealed that pyruvate kinase isoform M2 (PKM2)-mediated glycolysis enhancement is critical for the role of LNACROD in HCC. According to bioinformatics prediction and our experimental data, LNCAROD directly binds to SRSF3 to induce PKM switching towards PKM2 and maintains PKM2 levels in HCC by acting as a ceRNA against miR-145-5p. The oncogenic effects of LNCAROD in HCC were more prominent under hypoxia than normoxia due to the upregulation of hypoxia-triggered hypoxia-inducible factor 1α. CONCLUSIONS In summary, our present study suggests that LNCAROD induces PKM2 upregulation via simultaneously enhancing SRSF3-mediated PKM switching to PKM2 and sponging miR-145-5p to increase PKM2 level, eventually increasing cancer cell aerobic glycolysis to participate in tumor malignancy and chemoresistance, especially under hypoxic microenvironment. This study provides a promising diagnostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Guizhi Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Yan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Chengjie Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Shihui Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Hongliang Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhiqian Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Luo Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Huizhao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China
| | - Yanjie Song
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, People's Republic of China
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, 157011, Mudanjiang, People's Republic of China
| | - Naiwen Zhang
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, People's Republic of China
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, 157011, Mudanjiang, People's Republic of China
| | - Yukuan Feng
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, People's Republic of China.
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, 157011, Mudanjiang, People's Republic of China.
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, People's Republic of China.
- Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
14
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
15
|
Zeng ZL, Zhu Q, Zhao Z, Zu X, Liu J. Magic and mystery of microRNA-32. J Cell Mol Med 2021; 25:8588-8601. [PMID: 34405957 PMCID: PMC8435424 DOI: 10.1111/jcmm.16861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (∼22 nts in length) noncoding RNA molecules that function specifically by base pairing with the mRNA of genes and regulate gene expression at the post-transcriptional level. Alterations in miR-32 expression have been found in numerous diseases and shown to play a vital role in cell proliferation, apoptosis, oncogenesis, invasion, metastasis and drug resistance. MiR-32 has been documented as an oncomiR in the majority of related studies but has been also verified as a tumour suppressor miRNA in conflicting reports. Moreover, it has a crucial role in metabolic and cardiovascular disorders. This review provides an in-depth look into the most recent finding regarding miR-32, which is involved in the expression, regulation and functions in different diseases, especially tumours. Additionally, this review outlines novel findings suggesting that miR-32 may be useful as a noninvasive biomarker and as a targeted therapeutic in several diseases.
Collapse
Affiliation(s)
- ZL Zeng
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Key Laboratory for Arteriosclerology of Hunan ProvinceDepartment of Cardiovascular DiseaseHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qingyun Zhu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zhibo Zhao
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xuyu Zu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Jianghua Liu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
16
|
Luo C, Lu Z, Chen Y, Chen X, Liu N, Chen J, Dong S. MicroRNA-640 promotes cell proliferation and adhesion in glioblastoma by targeting Slit guidance ligand 1. Oncol Lett 2020; 21:161. [PMID: 33552279 PMCID: PMC7798089 DOI: 10.3892/ol.2020.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of microRNAs (miRNAs/miRs) on glioblastoma have attracted the attention of researchers in the last 7 years. However, the role of miR-640 and its targeted gene, Slit guidance ligand 1 (SLIT1), in the development of glioblastoma are not yet fully understood. The present study aimed to investigate the role of miR-640 in the proliferation and adhesion of glioblastoma. Reverse transcription-quantitative PCR analysis was performed to detect miR-640 and SLIT1 expression in glioblastoma tissues and cells. In addition, the Dual-luciferase reporter and RNA-pull down assays were performed to assess the association between miR-640 and SLIT1. The Cell Counting Kit-8, BrdU ELISA, cell adhesion and caspase-3 activity assays were also performed to assess cell viability, proliferation, adhesion and apoptosis of glioblastoma cells, respectively. The results demonstrated that miR-640 expression was upregulated in glioblastoma tissues and cells. In addition, miR-640 promoted the cell viability, proliferation and adhesion of glioblastoma cells, while inhibiting cell apoptosis. SLIT1, a direct downstream target of miR-640, was demonstrated to be downregulated in glioblastoma tissues and cells. Furthermore, overexpression of SLIT1 attenuated the promotive effect of miR-640 on glioblastoma cells. Taken together, these results suggest that miR-640 accelerates the proliferation and adhesion of glioblastoma cell lines by targeting and suppressing SLIT1.
Collapse
Affiliation(s)
- Chao Luo
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Zhiying Lu
- Department of Pediatrics, Kunming Medical University Affiliated Kunming Children's Hospital, Kunming, Yunnan 650034, P.R. China
| | - Yongli Chen
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Xiaozhen Chen
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Na Liu
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Jing Chen
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Shanwu Dong
- Department of Pediatrics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| |
Collapse
|