1
|
Gandham K, Thomas J, Riaz A, Balakrishnan D, Pereira A, Kariyat R. Rice master regulator 'HYR' enhances growth and defense mechanisms with consequences for fall armyworm growth and host selection. PLANT & CELL PHYSIOLOGY 2025; 66:687-704. [PMID: 40045601 DOI: 10.1093/pcp/pcaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 06/01/2025]
Abstract
Rice (Oryza sativa L.), the staple food for half of the world's population, suffers heavy damage by insect herbivores, especially the emerging fall armyworm (FAW), Spodoptera frugiperda. HIGHER YIELD RICE (HYR), a master regulator of multiple biological pathways with an established gene regulatory network, has been found to improve rice yield to ∼29% and tolerance to environmental stress. However, its impact on defense has not been explored. We hypothesized that, FAW would target HYR plants because of its vigorous growth and lead to trade-offs for defense. Through a series of experiments with HYR and its wild type (WT), we show that HYR plants have enhanced below-ground growth, physiological traits, and direct and indirect defense traits including leaf trichomes, wax, and volatile organic compounds. To test possible phytohormone-mediated defense signaling, we focussed on jasmonic acid and salicylic acid gene expression panel and found that most of these genes are highly expressed in HYR when compared to its WT counterpart. Bioassays examining developmental milestones also revealed that HYR plants effectively deter FAW, and when force-fed, caused negative effects. Collectively, our findings suggest that the master regulator HYR (Higher Yield Rice expressing) plants enhance growth and physiological traits, as well as physical and chemical defense mechanisms through co-ordinated defense gene expression, which deter herbivore feeding, growth, development, and host selection.
Collapse
Affiliation(s)
- Krishnarao Gandham
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Julie Thomas
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Awais Riaz
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Andy Pereira
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
2
|
Dilip D, Modupalli N, Rahman MM, Kariyat R. Atmospheric cold plasma alters plant traits and negatively affects the growth and development of fall armyworm in rice. Sci Rep 2025; 15:3680. [PMID: 39881156 PMCID: PMC11779975 DOI: 10.1038/s41598-025-87560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory. Given that cold plasma produces reactive oxygen and nitrogen species that can activate plant signalling molecules, it is plausible that cold plasma can have differential effects against insect herbivores. To test this, we evaluated the effectiveness of cold plasma on a polyphagous lepidopteran pest, Fall armyworm (FAW) [Spodoptera frugiperda (Lepidoptera: Noctuidae)] on rice (Oryza sativa L.) using an atmospheric plasma jet reactor that generated cold plasma using ambient air as the source gas. We treated rice seeds from two commonly grown Arkansas cultivars (Jewel and Diamond) with cold plasma, followed by irrigation with Cold Plasma-Activated Water (PAW). We then independently tested FAW growth on an artificial diet partially made with PAW. Our results show that cold plasma significantly affected the feeding, growth, and development of FAW, irrespective of the rice varieties. The effects of cold plasma treatment resulted in reduced damage by FAW, lower mass gain and longer pupation period on FAW compared to the untreated control. However, the effects of cold plasma on rice growth and development were dependent on the rice varieties. Cold plasma treatment also induced detrimental effects on FAW leading to ~ 25% mortality on cold plasma-treated plants when compared to untreated controls. Collectively, these findings offer significant evidence of the potential of cold plasma as a novel component for sustainable pest management.
Collapse
Affiliation(s)
- Deepak Dilip
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nikitha Modupalli
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Md Mahfuzur Rahman
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Nihranz CT, Helms AM, Tooker JF, Mescher MC, De Moraes CM, Stephenson AG. Adverse effects of inbreeding on the transgenerational expression of herbivore-induced defense traits in Solanum carolinense. PLoS One 2022; 17:e0274920. [PMID: 36282832 PMCID: PMC9595541 DOI: 10.1371/journal.pone.0274920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Cotrozzi L, Conti B, Lorenzini G, Pellegrini E, Nali C. In the tripartite combination ozone-poplar-Chrysomela populi, the pollutant alters the plant-insect interaction via primary metabolites of foliage. ENVIRONMENTAL RESEARCH 2021; 201:111581. [PMID: 34174255 DOI: 10.1016/j.envres.2021.111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucidate if leaf age and/or O3-sensitivity (considering Eridano and I-214 as O3-sensitive and O3-resistant, respectively) can affect suitability of poplar foliage for Chrysomela populi L. (Coleoptera Chrysomelidae), in terms of palatability. Comparing controls, only low amino acid (AA) contents were reported in Eridano [about 3- and 4-fold in mature and young leaves (ML and YL, respectively)], and all the investigated primary metabolites [i.e. water soluble carbohydrates (WSC), proteins (Prot) and AA] were higher in YL than in ML of I-214 (+23, +54 and + 20%, respectively). Ozone increased WSC only in YL of Eridano (+24%, i.e. highest values among samples; O3 effects are always reported comparing O3-treated plants with the related controls). A concomitant decrease of Prot was observed in both ML and YL of Eridano, while only in YL of I-214 (-41, -45 and -51%, respectively). In addition, O3 decreased AA in YL of Eridano and in ML of I-214 (-40 and -14%, respectively). Comparing plants maintained under charcoal-filtered air, total ascorbate (Asc) was lower in Eridano in both ML and YL (around -22%), and abscisic acid (ABA) was similar between clones; furthermore, higher levels of Asc were reported in YL than in ML of Eridano (+19%). Ozone increased Asc and ABA (about 2- and 3-fold, respectively) in both ML and YL of Eridano, as well as ABA in YL of I-214 (about 2-fold). Comparing leaves maintained under charcoal-filtered air, the choice feeding test showed that the 2nd instar larvae preferred YL, and the quantity of YL consumed was 9 and 4-fold higher than ML in Eridano and I-214, respectively. Comparing leaves exposed to O3-treatment, a significant feeding preference for YL disks was also observed, regardless of the clone. The no-choice feeding test showed that larval growth was slightly higher on untreated YL than on untreated ML (+19 and + 10% in Eridano and I-214, respectively). The body mass of larvae fed with O3-treated YL was also significantly higher than that of larvae fed with untreated YL (3- and 2-fold in Eridano and I-214). This study highlights that realistic O3 concentrations can significantly impact the host/insect interactions, a phenomenon dependent on leaf age and O3-sensitivity of the host.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy.
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
5
|
The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int J Mol Sci 2021; 22:ijms22031442. [PMID: 33535511 PMCID: PMC7867105 DOI: 10.3390/ijms22031442] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.
Collapse
|
6
|
Kariyat RR, Bentley TG, Nihranz CT, Stephenson AG, De Moraes CM, Mescher MC. Inbreeding in Solanum carolinense alters floral attractants and rewards and adversely affects pollinator visitation. AMERICAN JOURNAL OF BOTANY 2021; 108:74-82. [PMID: 33450062 DOI: 10.1002/ajb2.1594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Inbreeding depression is well documented in flowering plants and adversely affects a wide range of fitness-related traits. Recent work has begun to explore the effects of inbreeding on ecological interactions among plants and other organisms, including insect herbivores and pathogens. However, the effects of inbreeding on floral traits, floral scents, and pollinator visitation are less well studied. METHODS Using inbred and outbred maternal families of horsenettle (Solanum carolinense, Solanaceae), we examined the effects of inbreeding on traits associated with pollinator attraction and floral rewards. Specifically, we measured corolla size, counted pollen grains per flower, and analyzed floral volatile emissions via gas chromatography and mass spectrometry. We also examined pollinator visitation to experimental arrays of flowering inbred and outbred plants under field conditions. RESULTS Compared to those of outbred plants, flowers of inbred plants exhibited reduced corolla size and pollen production, as well as significantly reduced emission of the two most abundant volatile compounds in the floral blend. Furthermore, bumblebees-the main pollinators of horsenettle-discriminated against inbred flowers in the field: bees were more likely to make initial visits to flowers on outbred plants, visited outbred flowers more often overall, and spent more time on outbred flowers. CONCLUSIONS These results show that inbreeding can (1) alter floral traits that are known to mediate pollinator attraction; (2) reduce the production of floral rewards (pollen is the sole reward in horsenettle); and (3) adversely affect pollinator visitation under field conditions.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Thomas G Bentley
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Chad T Nihranz
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
7
|
Tayal M, Somavat P, Rodriguez I, Martinez L, Kariyat R. Cascading effects of polyphenol-rich purple corn pericarp extract on pupal, adult, and offspring of tobacco hornworm ( Manduca sexta L.). Commun Integr Biol 2020; 13:43-53. [PMID: 32313606 PMCID: PMC7159316 DOI: 10.1080/19420889.2020.1735223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 10/27/2022] Open
Abstract
A major bottleneck in the commercialization of plant-based pest management compounds is that the extraction methods are complex, time-consuming, and even highly expensive. Using a recently developed inexpensive extraction and quantification methodology to isolate polyphenols (including anthocyanins and condensed tannins) from purple corn pericarp, we examined their effects on Manduca sexta, a common insect herbivore. Following up on our previous work which demonstrated the negative impacts of polyphenol-rich extract on larval stages, we further examined whether there are any cascading effects on subsequent life stages (pupal and adult) including any possible transgenerational effects. Our results show that polyphenol-rich purple corn extract-fed caterpillars had significantly lower pupal mass and survival. Moreover, adult moths also had lower mass when eclosed from caterpillars reared on the extract diet. To test whether there were any transgenerational effects, we allowed male and female adults fed on purple corn extract diet and control diet to mate and lay eggs in a full factorial experiment. We found that purple corn extract-fed adult pair laid a lower number of eggs compared to other treatments. In addition, we also found that second instar M. sexta caterpillars hatched from eggs laid by any mating combination with at least one parent reared on purple corn extract gained significantly lower mass compared to caterpillars with both parents reared on the control diet. Taken together, our results show that there are cascading negative effects for feeding purple corn pericarp extract on pupal, adult, and second generation of M. sexta, reaffirming its potential application as a cost-effective and environmentally friendly pest deterrent.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Pavel Somavat
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Isabella Rodriguez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
8
|
Tayal M, Somavat P, Rodriguez I, Thomas T, Christoffersen B, Kariyat R. Polyphenol-Rich Purple Corn Pericarp Extract Adversely Impacts Herbivore Growth and Development. INSECTS 2020; 11:E98. [PMID: 32024239 PMCID: PMC7074539 DOI: 10.3390/insects11020098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Plant secondary metabolites such as terpenes, phenolics, glycosides, and alkaloids play various functional roles including pigmentation, foliar and floral volatile synthesis, hormonal regulation, and direct and indirect defenses. Among these, phenolic compounds are commonly found in plants, but vary in the distribution of their specific compounds among plant families. Polyphenols, including anthocyanins and tannins, are widely distributed and have been well documented for their roles- primarily in plant pigmentation and also in plant defenses. However, commercialization of such compounds for use in insect pest management is severely hampered by expensive, inefficient, and time-consuming extraction protocols. Using a recently developed inexpensive and easy extraction method using the byproducts of pigmented (purple) corn processing, we examined whether the crude pericarp extract rich in polyphenols can affect the growth and development of tobacco hornworm (Manduca sexta L.) caterpillars. Our findings show that purple corn pericarp extract negatively affected M. sexta egg hatching and larval mass gain and prolonged developmental time compared to regular yellow corn extract or an artificial control diet. We also found that these effects were more severe during the early stages of caterpillar development. These results conclusively demonstrate that purple corn pericarp, an inexpensive by-product of the corn milling industry, is a valuable product with excellent potential as an insect antifeedant.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (M.T.); (B.C.)
| | - Pavel Somavat
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Isabella Rodriguez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Tina Thomas
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Bradley Christoffersen
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (M.T.); (B.C.)
| | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (M.T.); (B.C.)
| |
Collapse
|
9
|
Clavijo McCormick A, Arrigo L, Eggenberger H, Mescher MC, De Moraes CM. Divergent behavioural responses of gypsy moth (Lymantria dispar) caterpillars from three different subspecies to potential host trees. Sci Rep 2019; 9:8953. [PMID: 31222054 PMCID: PMC6586621 DOI: 10.1038/s41598-019-45201-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022] Open
Abstract
Almost all previous work on host-plant selection by insect herbivores has focused on adult behaviour; however, immature life stages can also play an active role in host discrimination. The important forest pest Lymantria dispar (gypsy moth) has three recognised subspecies: the European, Asian, and Japanese gypsy moth. Unlike the other two subspecies, the European subspecies is characterised by a loss of female flight ability, which might impose a selective pressure on larvae to actively engage in host-plant selection. We therefore explored the interactions of early-instar larvae from laboratory colonies of each subspecies with four potential hosts of differing quality: oak, beech, maple, and pine—measuring larval survival and performance, feeding preferences, responses to host-derived odour cues, and the propensity to disperse from hosts via ballooning. Compared to larvae from the Asian and Japanese subspecies, larvae from the (American-originated) European gypsy moth colony exhibited (i) significantly lower survival on the poorest quality host (pine), (ii) an ability to discriminate among hosts via olfactory cues; and (iii) higher propensity to disperse from sub-optimal hosts. These results are consistent with the hypothesis that larvae from flightless female European Gypsy moth subspecies play a more active role in host-plant selection.
Collapse
Affiliation(s)
- Andrea Clavijo McCormick
- Massey University, School of Agriculture and Environment, Private Bag 11222, 4442, Palmerston North, New Zealand.,Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Luca Arrigo
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Helen Eggenberger
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland.
| |
Collapse
|
10
|
Haber AI, Sims JW, Mescher MC, De Moraes CM, Carr DE. A key floral scent component (β‐trans‐bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ariela I. Haber
- Department of Environmental Sciences University of Virginia Charlottesville Virginia
| | - James W. Sims
- Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - Mark C. Mescher
- Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | | | - David E. Carr
- Blandy Experimental Farm University of Virginia Boyce Virginia
| |
Collapse
|
11
|
Kariyat R, Chavana J, Kaur J. An Inexpensive and Comprehensive Method to Examine and Quantify Field Insect Community Influenced by Host Plant Olfactory Cues. Bio Protoc 2018; 8:e2967. [PMID: 34395772 DOI: 10.21769/bioprotoc.2967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/02/2022] Open
Abstract
Insect pollinators, herbivores and their natural enemies use olfactory cues emitted by their host plants to locate them. In insect-plant ecology, understanding the mechanisms underlying these interactions are of critical importance, as this bio-communication has both ecological and agricultural applications. However, the first step in such research is to identify and quantify the insect community associated with the plant/s species of interest. Traditionally, this has been accomplished by a variety of insect trapping methods, either using pitfall traps, or sticky traps, or sweep nets in field. The data collected from these traps tend to be incomplete, and also damage the specimens, making them unusable for any taxonomic purposes. This protocol derives ideas from these traditional traps and use a combination of three easily made inexpensive modified traps that conceals the host plant, but allows the plant volatiles to pass through as olfactory cues. These traps are economical, can be made to fit with most plant sizes, and are also reusable. Collectively, these traps will provide a solid estimate (quantifiable) of all associated community of arthropods that can also be stored for future studies.
Collapse
Affiliation(s)
- Rupesh Kariyat
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jesus Chavana
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jasleen Kaur
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
12
|
Haber AI, Rivera Sustache J, Carr DE. A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in
Mimulus guttatus. Ecosphere 2018. [DOI: 10.1002/ecs2.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ariela I. Haber
- Department of Environmental Sciences University of Virginia Charlottesville Virginia 22904 USA
| | | | - David E. Carr
- Blandy Experimental Farm University of Virginia Boyce Virginia 22620 USA
| |
Collapse
|
13
|
McNutt DW, Underwood N. Variation in plant‐mediated intra‐ and interspecific interactions among insect herbivores: effects of host genotype. Ecosphere 2016. [DOI: 10.1002/ecs2.1520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- David W. McNutt
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| | - Nora Underwood
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
14
|
Kariyat RR, Portman SL. Plant-herbivore interactions: Thinking beyond larval growth and mortality. AMERICAN JOURNAL OF BOTANY 2016; 103:789-791. [PMID: 27208346 DOI: 10.3732/ajb.1600066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Rupesh R Kariyat
- Biocommunication and Entomology, Institute of Agricultural Sciences, Schmelzbergstrasse 9, ETH Zurich, Zurich 8092, Switzerland
| | - Scott L Portman
- Montana State University, Western Triangle Agricultural Research Center, 9546 Old Shelby Road, Conrad, Montana 59425 USA
| |
Collapse
|
15
|
Johnson MT, Campbell SA, Barrett SC. Evolutionary Interactions Between Plant Reproduction and Defense Against Herbivores. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054215] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc T.J. Johnson
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6 Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Stuart A. Campbell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| |
Collapse
|
16
|
Carr DE, Haber AI, LeCroy KA, Lee DE, Link RI. Variation in reward quality and pollinator attraction: the consumer does not always get it right. AOB PLANTS 2015; 7:plv034. [PMID: 25858692 PMCID: PMC4417137 DOI: 10.1093/aobpla/plv034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/16/2015] [Indexed: 05/29/2023]
Abstract
Nearly all bees rely on pollen as the sole protein source for the development of their larvae. The central importance of pollen for the bee life cycle should exert strong selection on their ability to locate the most rewarding sources of pollen. Despite this importance, very few studies have examined the influence of intraspecific variation in pollen rewards on the foraging decisions of bees. Previous studies have demonstrated that inbreeding reduces viability and hence protein content in Mimulus guttatus (seep monkeyflower) pollen and that bees strongly discriminate against inbred in favour of outbred plants. We examined whether variation in pollen viability could explain this preference using a series of choice tests with living plants, artificial plants and olfactometer tests using the bumble bee Bombus impatiens. We found that B. impatiens preferred to visit artificial plants provisioned with fertile anthers over those provisioned with sterile anthers. They also preferred fertile anthers when provided only olfactory cues. These bumble bees were unable to discriminate among live plants from subpopulations differing dramatically in pollen viability, however. They preferred outbred plants even when those plants were from subpopulations with pollen viability as low as the inbred populations. Their preference for outbred plants was evident even when only olfactory cues were available. Our data showed that bumble bees are able to differentiate between anthers that provide higher rewards when cues are isolated from the rest of the flower. When confronted with cues from the entire flower, their choices are independent of the quality of the pollen reward, suggesting that they are responding more strongly to cues unassociated with rewards than to those correlated with rewards. If so, this suggests that a sensory bias or some level of deception may be involved with advertisement to pollinators in M. guttatus.
Collapse
Affiliation(s)
- David E Carr
- Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA 22620, USA
| | - Ariela I Haber
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Kathryn A LeCroy
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - De'Ashia E Lee
- Department of Infectious Diseases, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA
| | - Rosabeth I Link
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
17
|
Portman SL, Kariyat RR, Johnston MA, Stephenson AG, Marden JH. Inbreeding compromises host plant defense gene expression and improves herbivore survival. PLANT SIGNALING & BEHAVIOR 2015; 10:e998548. [PMID: 26039489 PMCID: PMC4623481 DOI: 10.1080/15592324.2014.998548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 05/29/2023]
Abstract
Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of lipoxygenease-D (LoxD) and 12-oxophytodienoate reductase-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants.
Collapse
Affiliation(s)
- Scott L Portman
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - Rupesh R Kariyat
- Department of Environmental Systems Science; ETH Zürich, Zürich, Switzerland
| | - Michelle A Johnston
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - Andrew G Stephenson
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - James H Marden
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| |
Collapse
|
18
|
Portman SL, Kariyat RR, Johnston MA, Stephenson AG, Marden JH. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Scott L. Portman
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Rupesh R. Kariyat
- Department of Environmental Systems Science ETH Zürich8092 Zürich Switzerland
| | - Michelle A. Johnston
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Andrew G. Stephenson
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - James H. Marden
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| |
Collapse
|