1
|
Wang Y, Cai X, Zhang Y, Hörandl E, Zhang Z, He L. The male-heterogametic sex determination system on chromosome 15 of Salix triandra and Salix arbutifolia reveals ancestral male heterogamety and subsequent turnover events in the genus Salix. Heredity (Edinb) 2023; 130:122-134. [PMID: 36593355 PMCID: PMC9981616 DOI: 10.1038/s41437-022-00586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Dioecious Salix evolved more than 45 million years ago, but have homomorphic sex chromosomes, suggesting that turnover event(s) prevented major differentiation. Sex chromosome turnover events have been inferred in the sister genus Populus. The genus Salix includes two main clades, Salix and Vetrix, with several previously studied Vetrix clade species having female-heterogametic (ZW) or male-heterogametic (XY) sex-determining systems (SDSs) on chromosome 15, while three Salix clade species have XY SDSs on chromosome 7. We here studied two basal taxa of the Vetrix clade, S. arbutifolia and S. triandra using S. purpurea as the reference genome. Analyses of whole genome resequencing data for genome-wide associations (GWAS) with the sexes and genetic differentiation between the sexes (FST values) showed that both species have male heterogamety with a sex-determining locus on chromosome 15, suggesting an early turnover event within the Vetrix clade, perhaps promoted by sexually antagonistic or (and) sex-ratio selection. Changepoint analysis based on FST values identified small sex-linked regions of ~3.33 Mb and ~2.80 Mb in S. arbutifolia and S. triandra, respectively. The SDS of S. arbutifolia was consistent with recent results that used its own genome as reference. Ancestral state reconstruction of SDS suggests that at least two turnover events occurred in Salix.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xinjie Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Zhang
- Shenyang Arboretum, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
2
|
Meissner ST. Plant sexual reproduction: perhaps the current plant two-sex model should be replaced with three- and four-sex models? PLANT REPRODUCTION 2021; 34:175-189. [PMID: 34213647 PMCID: PMC8360875 DOI: 10.1007/s00497-021-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The two-sex model makes the assumption that there are only two sexual reproductive states: male and female. However, in land plants (embryophytes) the application of this model to the alternation of generations life cycle requires the subtle redefinition of several common terms related to sexual reproduction, which seems to obscure aspects of one or the other plant generation: For instance, the homosporous sporophytic plant is treated as being asexual, and the gametophytes of angiosperms treated like mere gametes. In contrast, the proposal is made that the sporophytes of homosporous plants are indeed sexual reproductive organisms, as are the gametophytes of heterosporous plants. This view requires the expansion of the number of sexual reproductive states we accept for these plant species; therefore, a three-sex model for homosporous plants and a four-sex model for heterosporous plants are described and then contrasted with the current two-sex model. These new models allow the use of sexual reproductive terms in a manner largely similar to that seen in animals, and may better accommodate the plant alternation of generations life cycle than does the current plant two-sex model. These new models may also help stimulate new lines of research, and examples of how they might alter our view of events in the flower, and may lead to new questions about sexual determination and differentiation, are presented. Thus it is suggested that land plant species have more than merely two sexual reproductive states and that recognition of this may promote our study and understanding of them.
Collapse
Affiliation(s)
- Scott T Meissner
- Institute of Biology, University of the Philippines Diliman, 1101, Quezon City, NCR, Philippines.
| |
Collapse
|
3
|
Chae T, Harkess A, Moore RC. Sex-linked gene expression and the emergence of hermaphrodites in Carica papaya. AMERICAN JOURNAL OF BOTANY 2021; 108:1029-1041. [PMID: 34156700 DOI: 10.1002/ajb2.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/08/2021] [Indexed: 06/13/2023]
Abstract
PREMISE One evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex-determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (Carica papaya) has an XY chromosome system, where the presence of a Y chromosome determines maleness. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yh chromosome during its domestication. METHODS We investigated gene expression linked to the X, Y, and Yh chromosomes at different floral developmental stages to identify differentially expressed genes that may be involved in the sexual transition of males to hermaphrodites. RESULTS We identified 309 sex-biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions. Female (XX) expression in the sex-determining region was almost double that of X-linked expression in males (XY) and hermaphrodites (XYh ), which rules out dosage compensation for most sex-linked genes; although, an analysis of hemizygous X-linked loci found evidence of partial dosage compensation. Furthermore, we identified a candidate gene associated with sex determination and the transition to hermaphroditism, a homolog of the MADS-box protein SHORT VEGETATIVE PHASE. CONCLUSIONS We identified a pattern of partial dosage compensation for hemizygous genes located in the papaya sex-determining region. Furthermore, we propose that loss-of-expression of the Y-linked SHORT VEGETATIVE PHASE homolog facilitated the transition from males to hermaphrodites in papaya.
Collapse
Affiliation(s)
- Taylor Chae
- Department of Biology, Miami University, Oxford, OH
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | |
Collapse
|
4
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, Li M, Zhang X, Zhang L, Ren L, Ma X, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, Liu J, DiFazio SP, Olson M, Ma T. A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae. Mol Biol Evol 2021; 38:968-980. [PMID: 33027519 PMCID: PMC7947767 DOI: 10.1093/molbev/msaa261] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Collapse
Affiliation(s)
- Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liwen Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin—Madison, Madison, WI
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zhou R, Macaya-Sanz D, Schmutz J, Jenkins JW, Tuskan GA, DiFazio SP. Sequencing and Analysis of the Sex Determination Region of Populus trichocarpa. Genes (Basel) 2020; 11:E843. [PMID: 32722098 PMCID: PMC7465354 DOI: 10.3390/genes11080843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
The ages and sizes of a sex-determination region (SDR) are difficult to determine in non-model species. Due to the lack of recombination and enrichment of repetitive elements in SDRs, the quality of assembly with short sequencing reads is universally low. Unique features present in the SDRs help provide clues about how SDRs are established and how they evolve in the absence of recombination. Several Populus species have been reported with a male heterogametic configuration of sex (XX/XY system) mapped on chromosome 19, but the exact location of the SDR has been inconsistent among species, and thus far, none of these SDRs has been fully assembled in a genomic context. Here we identify the Y-SDR from a Y-linked contig directly from a long-read PacBio assembly of a Populus trichocarpa male individual. We also identified homologous gene sequences in the SDR of P. trichocarpa and the SDR of the W chromosome in Salix purpurea. We show that inverted repeats (IRs) found in the Y-SDR and the W-SDR are lineage-specific. We hypothesize that, although the two IRs are derived from the same orthologous gene within each species, they likely have independent evolutionary histories. Furthermore, the truncated inverted repeats in P. trichocarpa may code for small RNAs that target the homologous gene for RNA-directed DNA methylation. These findings support the hypothesis that diverse sex-determining systems may be achieved through similar evolutionary pathways, thereby providing a possible mechanism to explain the lability of sex-determination systems in plants in general.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV 26506-6057, USA; (R.Z.); (D.M.-S.)
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV 26506-6057, USA; (R.Z.); (D.M.-S.)
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA; (J.S.); (J.W.J.)
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA;
| | - Jerry W. Jenkins
- HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA; (J.S.); (J.W.J.)
| | - Gerald A. Tuskan
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA;
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506-6057, USA; (R.Z.); (D.M.-S.)
| |
Collapse
|
6
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
7
|
Jia H, Jia H, Cai Q, Wang Y, Zhao H, Yang W, Wang G, Li Y, Zhan D, Shen Y, Niu Q, Chang L, Qiu J, Zhao L, Xie H, Fu W, Jin J, Li X, Jiao Y, Zhou C, Tu T, Chai C, Gao J, Fan L, van de Weg E, Wang J, Gao Z. The red bayberry genome and genetic basis of sex determination. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:397-409. [PMID: 29992702 PMCID: PMC6335074 DOI: 10.1111/pbi.12985] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 05/12/2023]
Abstract
Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.
Collapse
Affiliation(s)
- Hui‐Min Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hui‐Juan Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | | | - Yan Wang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hai‐Bo Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wei‐Fei Yang
- Hangzhou 1 Gene LtdHangzhouChina
- Forestry Technology Extension CenterYuyaoNingboChina
- Present address:
Annoroad Gene Tech. Co., LtdBeijingChina
| | - Guo‐Yun Wang
- Forestry Technology Extension CenterYuyaoNingboChina
| | - Ying‐Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | | | - Yu‐Tong Shen
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing‐Feng Niu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular GeneticsCenter of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Le Chang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jie Qiu
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Lan Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Han‐Bing Xie
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wan‐Yi Fu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jing Jin
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiong‐Wei Li
- Forest & Fruit Tree InstituteShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yun Jiao
- Institute of ForestryNingbo Academy of Agricultural ScienceNingboChina
| | | | - Ting Tu
- Shunmei Breeding and Propagation Centre for Chinese BayberryYuyaoChina
| | | | | | - Long‐Jiang Fan
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Eric van de Weg
- Plant Breeding‐Wageningen University and ResearchWageningenThe Netherlands
| | | | - Zhong‐Shan Gao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol 2018; 16:e2006062. [PMID: 30148831 PMCID: PMC6128632 DOI: 10.1371/journal.pbio.2006062] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/07/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
Turnovers of sex-determining systems represent important diversifying forces across eukaryotes. Shifts in sex chromosomes—but conservation of the master sex-determining genes—characterize distantly related animal lineages. Yet in plants, in which separate sexes have evolved repeatedly and sex chromosomes are typically homomorphic, we do not know whether such translocations drive sex-chromosome turnovers within closely related taxonomic groups. This phenomenon can only be demonstrated by identifying sex-associated nucleotide sequences, still largely unknown in plants. The wild North American octoploid strawberries (Fragaria) exhibit separate sexes (dioecy) with homomorphic, female heterogametic (ZW) inheritance, yet sex maps to three different chromosomes in different taxa. To characterize these turnovers, we identified sequences unique to females and assembled their reads into contigs. For most octoploid Fragaria taxa, a short (13 kb) sequence was observed in all females and never in males, implicating it as the sex-determining region (SDR). This female-specific “SDR cassette” contains both a gene with a known role in fruit and pollen production and a novel retrogene absent on Z and autosomal chromosomes. Phylogenetic comparison of SDR cassettes revealed three clades and a history of repeated translocation. Remarkably, the translocations can be ordered temporally due to the capture of adjacent sequence with each successive move. The accumulation of the “souvenir” sequence—and the resultant expansion of the hemizygous SDR over time—could have been adaptive by locking genes into linkage with sex. Terminal inverted repeats at the insertion borders suggest a means of movement. To our knowledge, this is the first plant SDR shown to be translocated, and it suggests a new mechanism (“move-lock-grow”) for expansion and diversification of incipient sex chromosomes. Sex chromosomes frequently restructure themselves during organismal evolution, often becoming highly differentiated. This dynamic process is poorly understood for most taxa, especially during the early stages typical of many dioecious flowering plants. We show that in wild strawberries, a female-specific region of DNA is associated with sex and has repeatedly changed its genomic location, each time increasing the size of the hemizygous female-specific sequence on the W sex chromosome. This observation shows, for the first time to our knowledge, that plant sex regions can “jump” and suggests that this phenomenon may be adaptive by gathering and locking new genes into linkage with sex. This conserved and presumed causal sex-determining sequence, which varies in both genomic location and degree of differentiation, will facilitate future studies to understand how sex chromosomes first begin to differentiate.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shannon C. K. Straub
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wei N, Govindarajulu R, Tennessen JA, Liston A, Ashman TL. Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry. J Hered 2018; 108:731-739. [PMID: 29036451 DOI: 10.1093/jhered/esx077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/20/2017] [Indexed: 11/12/2022] Open
Abstract
With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR.
Collapse
Affiliation(s)
- Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Department of Biology, West Virginia University, Morgantown, WV 26505
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|