1
|
Núñez E, Gómez-Serrano M, Calvo E, Bonzon-Kulichenko E, Trevisan-Herraz M, Rodríguez JM, García-Marqués F, Magni R, Lara-Pezzi E, Martín-Ventura JL, Camafeita E, Vázquez J. A Multiplexed Quantitative Proteomics Approach to the Human Plasma Protein Signature. Biomedicines 2024; 12:2118. [PMID: 39335631 PMCID: PMC11428418 DOI: 10.3390/biomedicines12092118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the plasma proteome being able to provide a unique insight into the health and disease status of individuals, holding singular promise as a source of protein biomarkers that could be pivotal in the context of personalized medicine, only around 100 proteins covering a few human conditions have been approved as biomarkers by the US Food and Drug Administration (FDA) so far. Mass spectrometry (MS) currently has enormous potential for high-throughput analysis in clinical research; however, plasma proteomics remains challenging mainly due to the wide dynamic range of plasma protein abundances and the time-consuming procedures required. We applied a new MS-based multiplexed proteomics workflow to quantitate proteins, encompassing 67 FDA-approved biomarkers, in >1300 human plasma samples from a clinical cohort. Our results indicate that this workflow is suitable for large-scale clinical studies, showing good accuracy and reproducibility (coefficient of variation (CV) < 20 for 90% of the proteins). Furthermore, we identified plasma signature proteins (stable in time on an individual basis), stable proteins (exhibiting low biological variability and high temporal stability), and highly variable proteins (with low temporal stability) that can be used for personalized health monitoring and medicine.
Collapse
Affiliation(s)
- Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany;
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Elena Bonzon-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | - Marco Trevisan-Herraz
- International Center for Life, Newcastle University, Newcastle upon Tyne NE1 4EP, UK;
| | - José Manuel Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | | | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Luis Martín-Ventura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- IIS-Fundación Jiménez-Díaz, 28015 Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| |
Collapse
|
2
|
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, Madsbad S, Holst JJ, Torekov SS, Mann M. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol 2016; 12:901. [PMID: 28007936 PMCID: PMC5199119 DOI: 10.15252/msb.20167357] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of −16% and +37%, respectively (P < 10−13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.
Collapse
Affiliation(s)
- Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefka Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Niklas Grassl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany .,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|