1
|
Vu DD, Shah SNM, Pham MP, Bui VT, Nguyen MT, Nguyen TPT. De novo assembly and Transcriptome characterization of an endemic species of Vietnam, Panax vietnamensis Ha et Grushv., including the development of EST-SSR markers for population genetics. BMC PLANT BIOLOGY 2020; 20:358. [PMID: 32727354 PMCID: PMC7391578 DOI: 10.1186/s12870-020-02571-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding the genetic diversity in endangered species that occur inforest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. RESULTS In this study, we employed Illumina HiSeq™ 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. CONCLUSION Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.
Collapse
Affiliation(s)
- Dinh Duy Vu
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Syed Noor Muhammad Shah
- Department of Horticulture, Faculty of Agriculture, Gomal University Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Mai Phuong Pham
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Van Thang Bui
- College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam
| | - Minh Tam Nguyen
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Trang Nguyen
- Institute of Ecology and Biological Resource, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, , Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
2
|
Tian L, Shi S, Ji L, Nasir F, Ma L, Tian C. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. Int Microbiol 2018; 21:153-162. [PMID: 30810956 DOI: 10.1007/s10123-018-0015-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/03/2023]
Abstract
Panax ginseng is an important medicinal herb due to its ability to strengthen the human immune system. However, due to the increasing needs of ginseng in medicine, the continuous cropping of ginseng has become more common and has resulted in increased problems with fungal decay. Thus, chemical fungicides are commonly used in ginseng plantings, which have caused fungicide residue problems. As an alternative control measure, biocontrol bacteria can be used to manage fungal pathogens. Additionally, these bacteria are environmentally friendly and can also improve stress tolerance in plants. In this study, an antifungal bacterial strain, TB6, that possesses ACC deaminase activity was isolated from the rhizosphere of ginseng plants. This strain was identified as Bacillus amyloliquefaciens. TB6 was applied to 2-year-old ginseng seedlings for a 2-year period, and its impact on the soil rhizosphere was evaluated. The results revealed that strain TB6 decreased fungal abundance and diversity; improved urease, catalase, and phosphatase activities; and decreased the cellulase activity of the rhizosphere soil. In addition, strain TB6 also promoted root growth and increased the fresh weight of ginseng roots, in addition to increasing polyphenol oxidase and catalase activities. These results may have practical implications for the use of biocontrol bacteria in ginseng plantings.
Collapse
Affiliation(s)
- Lei Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Shi
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Li Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Fahad Nasir
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lina Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunjie Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| |
Collapse
|
3
|
Manzanilla V, Kool A, Nguyen Nhat L, Nong Van H, Le Thi Thu H, de Boer HJ. Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evol Biol 2018; 18:44. [PMID: 29614961 PMCID: PMC5883351 DOI: 10.1186/s12862-018-1160-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The economic value of ginseng in the global medicinal plant trade is estimated to be in excess of US$2.1 billion. At the same time, the evolutionary placement of ginseng (Panax ginseng) and the complex evolutionary history of the genus is poorly understood despite several molecular phylogenetic studies. In this study, we use a full plastome phylogenomic framework to resolve relationships in Panax and to identify molecular markers for species discrimination. RESULTS We used high-throughput sequencing of MBD2-Fc fractionated Panax DNA to supplement publicly available plastid genomes to create a phylogeny based on fully assembled and annotated plastid genomes from 60 accessions of 8 species. The plastome phylogeny based on a 163 kbp matrix resolves the sister relationship of Panax ginseng with P. quinquefolius. The closely related species P. vietnamensis is supported as sister of P. japonicus. The plastome matrix also shows that the markers trnC-rps16, trnS-trnG, and trnE-trnM could be used for unambiguous molecular identification of all the represented species in the genus. CONCLUSIONS MBD2 depletion reduces the cost of plastome sequencing, which makes it a cost-effective alternative to Sanger sequencing based DNA barcoding for molecular identification. The plastome phylogeny provides a robust framework that can be used to study the evolution of morphological characters and biosynthesis pathways of ginsengosides for phylogenetic bioprospecting. Molecular identification of ginseng species is essential for authenticating ginseng in international trade and it provides an incentive for manufacturers to create authentic products with verified ingredients.
Collapse
Affiliation(s)
- V Manzanilla
- The Natural History Museum, University of Oslo, Oslo, Norway.
| | - A Kool
- The Natural History Museum, University of Oslo, Oslo, Norway
| | - L Nguyen Nhat
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - H Nong Van
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - H Le Thi Thu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - H J de Boer
- The Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Li MR, Shi FX, Li YL, Jiang P, Jiao L, Liu B, Li LF. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer). Genome Biol Evol 2018; 9:2159-2169. [PMID: 28922794 PMCID: PMC5737880 DOI: 10.1093/gbe/evx160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 11/15/2022] Open
Abstract
Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng.
Collapse
Affiliation(s)
- Ming-Rui Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Feng-Xue Shi
- Northeast Normal University Natural History Museum, Changchun, China
| | - Ya-Ling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|