1
|
Hua Z, Wang Y, Chen W, Li W, Shen J. Emodin protects against intestinal dysfunction and enhances survival in rat model of septic peritonitis through anti-inflammatory actions. Immun Inflamm Dis 2023; 11:e942. [PMID: 37647455 PMCID: PMC10461418 DOI: 10.1002/iid3.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis is a significant contributor to organ function damage or failure that results in intestinal dysfunction. Emodin (Emo) has received much attention for its notable anti-inflammatory and antibacterial properties. We aimed to explore the function of Emo on sepsis. METHODS Sprague Dawley (SD) rats were pretreated with 20 or 40 mg/kg of Emo, followed by using cecal ligation and perforation to establish sepsis models. Hereafter, blood glucose levels, biochemical parameters, and inflammatory cytokines were measured. Additionally, ileal myeloperoxidase (MPO) activity was also measured. Diamine oxidase (DAO) level in plasma, fluorescein isothiocyanate-dextran 40 (FD-40) level in serum, bacteria number in blood and peritoneal fluid, histopathological changes of ileum, and tight junction (TJ) protein expressions in ileum were tested to evaluate the barrier function. Furthermore, CD4+ and CD8+ T cells' percentages were evaluated by flow cytometry. Finally, rats' survival rate was calculated as live rats divided by the total number of rats. RESULTS Emo pretreatment not only decreased blood glucose level, but also downregulated triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (SCr), blood urea nitrogen (BUN) contents for sepsis rats, especially for the high dose of Emo (p < .05). Furthermore, Emo inhibited MPO activity and inflammatory factor release (p < .05). Crucially, after Emo administration, the barrier function of ileum was enhanced, evidenced by the reduced DAO, FD-40 levels, decreased bacteria number, alleviated pathological damage in ileum and increased TJ protein expressions (p < .05). Rats treated with Emo exhibited increased percentages of CD8+ and CD4+ T cells (p < .05), as well as an improved survival rate. CONCLUSION Emo exhibited a remarkable ability to attenuate sepsis by restoring intestinal dysfunction and improving survival rates, and the mechanism was closely related to anti-inflammatory properties, which provided new solid evidence for the use of Emo in treating sepsis.
Collapse
Affiliation(s)
- Zhongjie Hua
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Yaqin Wang
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Weiping Chen
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Wei Li
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| | - Jiali Shen
- Department of Emergency MedicineThe First People's Hospital of PinghuPinghuZhejiangChina
| |
Collapse
|
2
|
Wang M, Pan C, Deng D, Xie M, Cao Y. Emodin Exerts its Therapeutic Effects Through Metabolic Remodeling in Severe Acute Pancreatitis-Related Intestinal Injury. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231163995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Background Intestinal injury caused by severe acute pancreatitis (SAP) can induce peripancreatic and systemic infection, and aggravate systemic inflammation. Emodin has demonstrated efficacy in mitigating SAP-associated intestinal injury. Although metabolites in tissues cause histopathophysiological changes, data on the mechanisms of emodin on metabolic processes remain scant. Methods The SAP-related intestinal injury rat model was induced by injection of 3.5% sodium taurocholate solution through the biliopancreatic duct. The protective effect of emodin on intestinal injury was evaluated by histologic analyses. On the other hand, we assessed the effect of emodin on metabolic remodeling in intestinal tissues using untargeted metabolomics. Results Out of the analyzed 1187 metabolites, untargeted metabolomics identified 99 differential metabolites in the intestinal tissues. Emodin significantly alleviated the inflammatory injury in the pancreas and intestines. Emodin treatment led to significant changes in bile acid metabolism, amino acid metabolism, intestinal microbiota related metabolism, and glycerol phospholipid metabolism in the intestinal tissues. In addition, using the weighted gene co-expression network analysis, we constructed emodin related metabolite–metabolite interaction network and showed that intestinal microbiota related metabolites and glycerol phospholipid metabolism were associated with emodin treatment. Glycine, LPC (0:0/22:6), Spermidine, 11β-hydroxyprogesterone, and N1-methyl-2-Pyridone-5-carboxamide may be efficient molecules after emodin treatment. Conclusion Taken together, our data demonstrated that intestinal injury caused by SAP induces an obvious metabolic disorder. Emodin exerts its therapeutic effects through metabolic remodeling.
Collapse
Affiliation(s)
- Minjie Wang
- Department of Anal and Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Pan
- Division of Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dawei Deng
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepato-biliary-pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mingzheng Xie
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongqing Cao
- Department of Anal and Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Natural Chinese herbs for the prevention and treatment of acute pancreatitis: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
5
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
6
|
Xiang H, Zhang Q, Qi B, Tao X, Xia S, Song H, Qu J, Shang D. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Front Pharmacol 2017; 8:216. [PMID: 28487653 PMCID: PMC5403892 DOI: 10.3389/fphar.2017.00216] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.
Collapse
Affiliation(s)
- Hong Xiang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|