1
|
Zhu B, Cao A, Chen C, Zhou W, Luo W, Gui Y, Wang Q, Xu Z, Wang J. MMP-9 inhibition alleviates postoperative cognitive dysfunction by improving glymphatic function via regulating AQP4 polarity. Int Immunopharmacol 2024; 126:111215. [PMID: 38000234 DOI: 10.1016/j.intimp.2023.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication after surgery, characterized by deficits in memory, attention and cognitive flexibility. However, the underlying mechanisms of POCD remain unclear. Neuroinflammation and blood-brain barrier disruption have been implicated as potential pathological processes. This study explores the neuroprotective effects and mechanisms of the matrix metalloproteinase(MMP-9)inhibitor GM6001 against POCD. We hypothesize GM6001 may reduce neuroinflammation and preserve blood-brain barrier integrity through direct inhibition of MMP-9. Moreover, GM6001 may stabilize aquaporin-4 polarity and glymphatic clearance function by modulating MMP-9-mediated cleavage of dystroglycan, a key protein for aquaporin-4 anchoring. Our results demonstrate GM6001 alleviates postoperative cognitive deficits and neuroinflammation. GM6001 also preserves blood-brain barrier integrity and rescues aquaporin-4 mislocalization after surgery. This study reveals a novel dual role for MMP-9 inhibition in cognitive protection through direct anti-neuroinflammatory effects and regulating aquaporin-4 membrane distribution. Targeting MMP-9 may represent a promising strategy to prevent postoperative cognitive dysfunction by integrating multiple protective mechanisms.
Collapse
Affiliation(s)
- Binbin Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Angyang Cao
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Chunqu Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Weijian Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Wenjun Luo
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yu Gui
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Qinwen Wang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Zhipeng Xu
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Jianhua Wang
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China.
| |
Collapse
|
2
|
Amakye D, Gyan PO, Santa S, Aryee NA, Adu-Bonsaffoh K, Quaye O, Tagoe EA. Extracellular matrix metalloproteinases inducer gene polymorphism and reduced serum matrix metalloprotease-2 activity in preeclampsia patients. Exp Biol Med (Maywood) 2023; 248:1550-1555. [PMID: 37937473 PMCID: PMC10676128 DOI: 10.1177/15353702231199464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 11/09/2023] Open
Abstract
Preeclampsia increases the risk of pregnancy-related complications, nevertheless a successful spiral vessel remodeling, and trophoblast invasion reduces disorders of pregnancy. Matrix metalloproteinase-2 (MMP-2) clears the path for trophoblast invasion, and activation of MMP-2 largely depends on extracellular matrix metalloproteinases inducer (EMMPRIN) protein. This study aimed to investigate EMMPRIN gene polymorphism and MMP-2 activity in preeclampsia patients. Archival whole blood and serum samples of 74 preeclampsia and 66 normotensive pregnant women age-matched were used in this case-control study. Genomic DNA was extracted from the whole blood samples and EMMPRIN gene amplified with specific primers following fragments sequence mutation analysis. Serum MMP-2 activity was determined using enzyme-linked immunosorbent assay (ELISA) and socio-demographic data of participants retrieved from the database. Age of preeclampsia patients (32.78 ± 6.39) years and body mass index (BMI) (33.09 ± 7.27) kg/m2 compared with the normotensive counterparts (32.33 ± 5.56) years and (32.33 ± 5.56) kg/m2,respectively, were not statistically significant (P > 0.05). Serum matrix metalloprotease-2 (MMP-2) activity was significantly reduced in preeclampsia group (16.34 ± 7.07) compared with the normotensives (25.63 ± 4.56) (P < 0.001), and rs424243T/G variant (55.6%) was overrepresented among the cases compared with the normotensives (16.7%). The single-nucleotide polymorphism T/G was found to be associated with preeclampsia (odds ratio [OR] = 7.63; 95% confidence interval [CI] = 3.95-14.75; P < 0.0001). Decreased activity of MMP-2 and rs424243T/G SNP of EMMPRIN gene was reported in preeclampsia. These preliminary data warrant a further investigation into the relationship between EMMPRIN gene polymorphism and MMP-2 activity in preeclampsia.
Collapse
Affiliation(s)
- Daniel Amakye
- Department of Medical Laboratory Sciences, University of Ghana, Accra 00233, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra 00233, Ghana
| | - Priscilla O Gyan
- Department of Medical Laboratory Sciences, University of Ghana, Accra 00233, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra 00233, Ghana
| | - Sheila Santa
- Department of Medical Laboratory Sciences, University of Ghana, Accra 00233, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra 00233, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Accra 00233, Ghana
| | - Kwame Adu-Bonsaffoh
- Department of Obstetrics and Gynaecology, University of Ghana Medical School, University of Ghana, Accra 00233, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra 00233, Ghana
| | | |
Collapse
|
3
|
Gancedo NC, Isolani R, de Oliveira NC, Nakamura CV, de Medeiros Araújo DC, Sanches ACC, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP. Chemical Constituents, Anticancer and Anti-Proliferative Potential of Limonium Species: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:293. [PMID: 37259435 PMCID: PMC9958820 DOI: 10.3390/ph16020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 04/13/2024] Open
Abstract
Limonium species represent a source of bioactive compounds that have been widely used in folk medicine. This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. Searches were performed in the electronic databases PubMed/MEDLINE, Scopus, and Scielo and via a manual search. In vivo or in vitro studies that evaluated the anticancer or anti-proliferative effect of at least one Limonium species were included. In total, 942 studies were identified, with 33 articles read in full and 17 studies included for qualitative synthesis. Of these, 14 (82.35%) refer to in vitro assays, one (5.88%) was in vivo, and two (11.76%) were designed as in vitro and in vivo assays. Different extracts and isolated compounds from Limonium species were evaluated through cytotoxic analysis against various cancer cells lines (especially hepatocellular carcinoma-HepG2; n = 7, 41.18%). Limonium tetragonum was the most evaluated species. The possible cellular mechanism involved in the anticancer activity of some Limonium species included the inhibition of enzymatic activities and expression of matrix metalloproteinases (MMPs), which suggested anti-metastatic effects, anti-melanogenic activity, cell proliferation inhibition pathways, and antioxidant and immunomodulatory effects. The results reinforce the potential of Limonium species as a source for the discovery and development of new potential cytotoxic and anticancer agents. However, further studies and improvements in experimental designs are needed to better demonstrate the mechanism of action of all of these compounds.
Collapse
Affiliation(s)
- Naiara Cássia Gancedo
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Raquel Isolani
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Natalia Castelhano de Oliveira
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | | | - Fernanda Stumpf Tonin
- Pharmaceutical Sciences Post-Graduate Research Program, Universidade Federal do Paraná, Curitiba 80210-170, Brazil
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Danielly Chierrito
- Department of Pharmacy, Centro Universitário Ingá, Maringá 87035-510, Brazil
| | - João Carlos Palazzo de Mello
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| |
Collapse
|
4
|
Jang SN, Kang MJ, Kim YN, Jeong EJ, Cho KM, Yun JG, Son KH. Physiological and biochemical responses of Limonium tetragonum to NaCl concentrations in hydroponic solution. FRONTIERS IN PLANT SCIENCE 2023; 14:1159625. [PMID: 37180402 PMCID: PMC10170659 DOI: 10.3389/fpls.2023.1159625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Introduction Limonium (L.) tetragonum (Thunb.) A. A. Bullock, a halophyte that grows all over the southwest coast of Korea, is a medicinal plant with various pharmacological effects. The salt defense mechanism stimulates the biosynthesis of various secondary metabolites and improves functional substances. In this study, we investigated the optimal NaCl concentration for the growth and enhancement of secondary metabolites in hydroponically grown L. tetragonum. Methods The seedlings grown for 3 weeks in a hydroponic cultivation system were treated with 0-, 25-, 50-, 75-, and 100-mM NaCl in Hoagland's nutrient solution for 8 weeks. No significant effect on the growth and chlorophyll fluorescence was observed for the NaCl concentrations below 100-mM. Results and discussions The increase in the NaCl concentration resulted in the decrease in the water potential of the L. tetragonum leaves. The Na+ content accumulated in the aerial part increased rapidly and the content of K+, which acts as an antagonist, decreased with the increase in NaCl concentrations in hydroponics. The total amino acid content of L. tetragonum decreased compared to the 0-mM NaCl, and most of the amino acid content decreased as the NaCl concentration increased. In contrast, the content of urea, proline (Pro), β-alanine, ornithine, and arginine was increased with an increase in NaCl concentration. The Pro content at 100-mM NaCl accounted for 60% of the total amino acids and was found to be a major osmoregulator as an important component of the salt defense mechanisms. The top five compounds identified in the L. tetragonum were classified as flavonoids while the flavanone compound was detected only in the NaCl treatments. A total of four myricetin glycosides were increased in comparison to the 0-mM NaCl. Among the differentially expressed genes, a significantly large change in Gene ontology was seen in the circadian rhythm. NaCl treatment enhanced the flavonoid-based substances of L. tetragonum. The optimum NaCl concentration for the enhancement of secondary metabolites of the L. tetragonum in the vertical farm-hydroponic cultivation system was 75-mM NaCl.
Collapse
Affiliation(s)
- Seong-Nam Jang
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Ji Kang
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yun Na Kim
- Department of Plant and Biomaterials Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Jeong
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Department of Plant and Biomaterials Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kye Man Cho
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Gil Yun
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Ho Son
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Ki-Ho Son,
| |
Collapse
|
5
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Han G, Song L, Ding Z, Wang Q, Yan Y, Huang J, Ma C. The Important Double-Edged Role of Astrocytes in Neurovascular Unit After Ischemic Stroke. Front Aging Neurosci 2022; 14:833431. [PMID: 35462697 PMCID: PMC9021601 DOI: 10.3389/fnagi.2022.833431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
In recent years, neurovascular unit (NVU) which is composed of neurons, astrocytes (Ast), microglia (MG), vascular cells and extracellular matrix (ECM), has become an attractive field in ischemic stroke. As the important component of NVU, Ast closely interacts with other constituents, which has been playing double-edged sword roles, beneficial or detrimental after ischemic stroke. Based on the pathophysiological changes, we evaluated some strategies for targeting Ast in treating ischemic stroke. The present review is focused on the roles of Ast in NVU and its complex signaling molecular network after ischemic stroke, which may be a prospective approach to the treatment of ischemic diseases in central nervous system.
Collapse
Affiliation(s)
- Guangyuan Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Lijuan Song,
| | - Zhibin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yuqing Yan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
- Yuqing Yan,
| | - Jianjun Huang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
- Jianjun Huang,
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
- Cungen Ma,
| |
Collapse
|
7
|
Yang X, Wang P, Yan S, Wang G. Study on potential differentially expressed genes in stroke by bioinformatics analysis. Neurol Sci 2021; 43:1155-1166. [PMID: 34313877 PMCID: PMC8789718 DOI: 10.1007/s10072-021-05470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Stroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.
Collapse
Affiliation(s)
- Xitong Yang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Pengyu Wang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shanquan Yan
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Guangming Wang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
8
|
Darshetkar AM, Maurya S, Lee C, Bazarragchaa B, Batdelger G, Janchiv A, Jeong EJ, Choi S, Choudhary RK, Kim SY. Plastome analysis unveils Inverted Repeat (IR) expansion and positive selection in Sea Lavenders ( Limonium, Plumbaginaceae, Limonioideae, Limonieae). PHYTOKEYS 2021; 175:89-107. [PMID: 33867801 PMCID: PMC8032645 DOI: 10.3897/phytokeys.175.61054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 05/25/2023]
Abstract
The genus Limonium, commonly known as Sea Lavenders, is one of the most species-rich genera of the family Plumbaginaceae. In this study, two new plastomes for the genus Limonium, viz. L. tetragonum and L. bicolor, were sequenced and compared to available Limonium plastomes, viz. L. aureum and L. tenellum, to understand the gene content and structural variations within the family. The loss of the rpl16 intron and pseudogenisation of rpl23 was observed. This study reports, for the first time, expansion of the IRs to include the ycf1 gene in Limonium plastomes, incongruent with previous studies. Two positively selected genes, viz. ndhF and ycf2, were identified. Furthermore, putative barcodes are proposed for the genus, based on the nucleotide diversity of four Limonium plastomes.
Collapse
Affiliation(s)
- Ashwini M. Darshetkar
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Satish Maurya
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Badamtsetseg Bazarragchaa
- Department of Environment & Forest Resources, Chungnam National University, Daejeon 34134, South Korea
| | - Gantuya Batdelger
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Agiimaa Janchiv
- Department of Biology, Ulaanbaatar State University, Ulaanbaatar 13343, Mongolia
| | - Eun Ju Jeong
- Department of Plants & Biomaterials Science, Gyeongsang National University, Jinju 52725, South Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Ritesh Kumar Choudhary
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| |
Collapse
|
9
|
Anuar NNM, Zulkafali NIN, Ugusman A. Modulation of Matrix Metalloproteinases by Plant-derived Products. Curr Cancer Drug Targets 2021; 21:91-106. [PMID: 33222671 DOI: 10.2174/1568009620666201120144838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent metalloendopeptidases that are responsible for the degradation, repair, and remodeling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases, such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic, and food industries. This review summarises the current knowledge of plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signaling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviors, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.
Collapse
Affiliation(s)
- Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurul Iman Natasya Zulkafali
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Graça C, Mota J, Lima A, Boavida Ferreira R, Raymundo A, Sousa I. Glycemic Response and Bioactive Properties of Gluten-Free Bread with Yoghurt or Curd-Cheese Addition. Foods 2020; 9:E1410. [PMID: 33020440 PMCID: PMC7601360 DOI: 10.3390/foods9101410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
The influence of flour replacement by yogurt or curd-cheese additions (from 10% to 20%, w/w) on the glycemic response and bioactivity improvements of gluten-free bread was evaluated. Starch digestibility, measured by an in vitro digestion model, was applied to determine the effect on starch fractions. The bread glycemic index was calculated. Bread antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric-ion-reducing antioxidant power (FRAP) methods) and total phenolic compounds were assessed. Anti-inflammatory properties according to enzymatic matrix metalloproteinase (MMP)-9 inhibitory activity were also studied. Considering the higher level of both dairy products tested (20%, w/w) and comparing with control bread results, a reduction of around 35% in the glycemic response of curd cheese bread was achieved, resulting in intermediate index level (glycemic index (GI) 55-69), with yogurt bread still showing a high glycemic index (GI > 70). In terms of bread bioactivity, curd cheese bread expressed better reducing power effects, whereas yogurt bread showed more effective radical-scavenging capacity. An increase in bread phenolic compounds by yogurt (55.3%) and curd cheese (73.0%) additions (at 20%) were also registered. MMP-9 inhibition activity was higher in the dairy bread than in control bread, suggesting an improvement in terms of anti-inflammatory properties. The supplementation of the gluten-free bread by yogurt or curd cheese was shown to be a promising strategy to reduce the glycemic response and to improve the bioactive properties of the bread, that which can contribute to preventive diets of celiac patients and irritable bowel syndrome individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (C.G.); (J.M.); (A.L.); (R.B.F.); (A.R.)
| |
Collapse
|
11
|
Lee JI, Kil JH, Yu GH, Karadeniz F, Oh JH, Seo Y, Kong CS. 3,5-Dicaffeoyl-epi-quinic acid inhibits the PMA-stimulated activation and expression of MMP-9 but not MMP-2 via downregulation of MAPK pathway. ACTA ACUST UNITED AC 2020; 75:113-120. [DOI: 10.1515/znc-2019-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, are very important gelatinases that are overexpressed during tumor metastasis. Up to date, several MMP inhibitors have been developed from natural sources as well as organic synthesis. In the present study, the MMP-2 and MMP-9 inhibitory effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA), a caffeoylquinic acid derivative isolated from Atriplex gmelinii, were investigated in phorbol 12-myristate 13-acetate (PMA)-treated human HT1080 fibrosarcoma cells. Gelatin zymography and immunoblotting showed that DCEQA significantly inhibited the PMA-induced activation and expression of MMP-9 but was not able to show any effect against MMP-2. DCEQA treatment was also shown to upregulate the protein expression of tissue inhibitor of MMP-1 along with decreased MMP-9 protein levels. Moreover, the effect of DCEQA on phosphorylation of mitogen activated protein kinases (MAPKs), analyzed by immunoblotting, indicated the DCEQA inhibited the MMP-9 by downregulation of MAPK pathway. Collectively, current results suggested that DCEQA is a potent MMP-9 inhibitor and can be utilized as lead compound for treatment of pathological complications involving enhanced MMP activity such as cancer metastasis.
Collapse
Affiliation(s)
- Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
| | - Jung-Ha Kil
- Marine Biotechnology Center for Pharmaceuticals and Foods , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
| | - Ga Hyun Yu
- Department of Food and Nutrition, College of Medical and Life Sciences , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
| | - Youngwan Seo
- Division of Marine Bioscience , College of Ocean Science and Technology, Korea Maritime and Ocean University , Busan 49112 , Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods , Silla University , Baegyang-daero 700 beon-gil 140 , Sasang-gu, Busan 46958 , Korea
- Department of Food and Nutrition, College of Medical and Life Sciences , Silla University , Baegyang-daero 700 beon-gil 140, Sasang-gu , Busan 46958 , Korea , Phone: +82-51-999-5429
| |
Collapse
|
12
|
Anticatabolic and Anti-Inflammatory Effects of Myricetin 3-O-β-d-Galactopyranoside in UVA-Irradiated Dermal Cells via Repression of MAPK/AP-1 and Activation of TGFβ/Smad. Molecules 2020; 25:molecules25061331. [PMID: 32183404 PMCID: PMC7144112 DOI: 10.3390/molecules25061331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
UV irradiation is one of the main causes of extrinsic skin aging. UV-mediated skin aging, also known as photoaging, causes excessive breakdown of extracellular matrix which leads skin to lose its elasticity and strength. Several phytochemicals are known to exert anti-photoaging effects via different mechanisms, partly due to their antioxidant properties. The current study has been carried out to determine the potential anti-photoaging properties of myricetin 3-O-β-d-galacto-pyranoside (M3G), a flavonol glycoside isolated from L. tetragonum, in UVA-irradiated in vitro models; HaCaT keratinocytes and human dermal fibroblasts (HDFs). UVA-induced changes in MMP-1 and collagen production have been observed in HaCaT keratinocytes and HDFs. Further, UVA-induced activation of MAPK signaling, and pro-inflammatory cytokine production have been investigated. TGFβ/Smad pathway has also been analyzed in UVA-irradiated HDFs. Treatment with M3G reversed the UVA-induced changes in MMP-1 and collagen production both in HaCaT keratinocytes and HDFs. UVA-mediated activation of p38, ERK and JNK MAPK activation was also inhibited by M3G treatment in HaCaT keratinocytes. In HDFs, M3G was able to upregulate the TGFβ/Smad pathway activation. In addition, M3G downregulated the UVA-induced pro-inflammatory cytokines in keratinocytes and HDFs. It has been suggested that the M3G has exerted potential antiphotoaging properties in vitro, by attenuating UVA-induced changes in MMP-1 and collagen production in keratinocytes and dermal fibroblasts.
Collapse
|
13
|
Panich U, Slominski AT. Editorial: Redox Biology of Skin Aging and Carcinogenesis: the Role of Natural Antioxidants as Potential Protective Agents. Front Pharmacol 2020; 11:249. [PMID: 32210823 PMCID: PMC7069100 DOI: 10.3389/fphar.2020.00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States.,VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
14
|
Lu Z, Chang L, Zhou H, Liu X, Li Y, Mi T, Tong D. Arctigenin Attenuates Tumor Metastasis Through Inhibiting Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma via Suppressing GSK3β-Dependent Wnt/β-Catenin Signaling Pathway In Vivo and In Vitro. Front Pharmacol 2019; 10:937. [PMID: 31555129 PMCID: PMC6726742 DOI: 10.3389/fphar.2019.00937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Arctigenin (ARG) has been reported to be a bioactive lignan from Arctium lappa exerting various activities including anti-cancer and immune-regulation. The present study aimed to investigate the anti-metastasis activity and mechanism of ARG against hepatocellular carcinoma in vitro and in vivo. The results showed that ARG exhibited a significant cytotoxicity on Hep G2 and SMMC 7721 cells (but not on normal liver cells LO2). In addition, the migration and invasion of Hep G2 and SMMC 7721 cells were also remarkably repressed. Furthermore, ARG attenuated Wnt/β-catenin signaling activation, resulting in the down-regulation of β-catenin target genes including c-Myc, cyclin D1, MMP-9, and ZO-1. Noticeably, ARG attenuated the activation of Wnt/β-catenin through a GSK3β-dependent pathway. Besides, we also found that ARG potentially inhibited epithelial-mesenchymal transition by up-regulating the epithelial and down-regulating the mesenchymal marker proteins. In vivo, intraperitoneal injection of ARG not only significantly inhibited the growth of subcutaneous transplanted tumor but also dramatically alleviated the tumor metastasis in liver. Our data demonstrated that ARG exerted anti-epithelial-mesenchymal transition and anti-metastasis activities against hepatocellular carcinoma, which might make it a candidate as a preventive agent for cancer metastasis.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinqian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiejun Mi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis activities of norcantharidin-conjugated carboxymethyl chitosan as a novel drug delivery system. Carbohydr Polym 2019; 214:80-89. [DOI: 10.1016/j.carbpol.2019.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/23/2023]
|
16
|
Kim H, Karadeniz F, Kong CS, Seo Y. Evaluation of MMP Inhibitors Isolated from Ligustrum japonicum Fructus. Molecules 2019; 24:molecules24030604. [PMID: 30744075 PMCID: PMC6384611 DOI: 10.3390/molecules24030604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the ability of two secoiridoids, GL-3 (1) and oleonuezhenide (2), isolated from the fruits of Ligustrum japonicum to inhibit MMP-2 and -9 activity in phorbol 12-myristate 13-acetate (PMA)-induced HT-1080 human fibrosarcoma cells. Both compounds1 and 2 were able to exert lowered gelatin digestion activity for MMP-2 and -9 tested by gelatin zymography via suppressing the release of MMPs to culture medium according to ELISA results. Treatment with compounds was also able to suppress the expression of both mRNA and protein levels of MMP-2 and -9. Action mechanism behind the MMP inhibitory effect of the compounds was suggested to be via MAPK pathway indicated by decreased levels of phosphorylated p38, ERK and JNK proteins evaluated employing immunoblotting. Compound 1 was shown to be slightly more active to inhibit MMP-2 and -9, however, compound 2 showed more regular dose-dependency during inhibition. In conclusion, this study suggested that GL-3 and oleonuezhenide were notable natural origin potent MMP inhibitors and could serve as lead compounds for development of anti-invasive MMP inhibitors against tumor metastasis.
Collapse
Affiliation(s)
- Hojun Kim
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Baegyang-daero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Baegyang-daero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Baegyang-daero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
17
|
Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, Zhao H. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol 2017; 147:418-425. [DOI: 10.1016/j.ygyno.2017.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022]
|
18
|
MMP-Inhibitory Effects of Flavonoid Glycosides from Edible Medicinal Halophyte Limonium tetragonum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6750274. [PMID: 29234420 PMCID: PMC5632445 DOI: 10.1155/2017/6750274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Limonium tetragonum has been well-known for its antioxidative properties as a halophyte. This study investigated the antimetastasis effect of solvent-partitioned L. tetragonum extracts (LTEs) and isolated compounds on HT1080 mouse melanoma cell model with a focus on matrix metalloproteinase (MMP) activity and TIMP and MAPK pathways. Upregulation and stimulation of MMPs result in elevated degradation of extracellular matrix which is part of several complications such as metastasis, cirrhosis, and arthritis. The anti-MMP capacity of LTEs was confirmed by their MMP-inhibitory effects, regulation of MMP and TIMP expression, and suppression of MAPK pathway. Among all tested LTEs, 85% aq. MeOH and n-BuOH were found to be most active fractions which later yielded two known flavonoid glycosides, myricetin 3-galactoside and quercetin 3-o-beta-galactopyranoside. Anti-MMP potential of the compounds was confirmed by their ability to regulate MMP expression through inhibited MAPK pathway activation. These results suggested that L. tetragonum might serve as a potential source of bioactive substances with effective anti-MMP properties.
Collapse
|
19
|
Associations of MMP-2 and MMP-9 gene polymorphism with ulinastatin efficacy in patients with severe acute pancreatitis. Biosci Rep 2017; 37:BSR20160612. [PMID: 28779012 PMCID: PMC5569160 DOI: 10.1042/bsr20160612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
We aim to explore the associations between matrix metalloproteinase (MMP) MMP-2/MMP-9 gene polymorphism with ulinastatin (UTI) efficacy in treating severe acute pancreatitis (SAP). A total of 276 SAP patients were assigned into the control (n=135) and observation (n=141) groups. PCR-restriction fragment length polymorphism (PCR-RFLP) was used for genotype and allele frequency distribution. Relevance of MMP-2/MMP-9 genotypes with UTI efficacy was analyzed. The observation group showed lowered duration in symptoms (abdominal distension, abdominal pain, tenderness, and rebound tenderness) than the control group. Laboratory analysis (serum calcium, white blood cells, serum amylase, urine amylase, APACHE-II, and Balthazar CTIS scores) were decreased, while serum albumin levels increased after 7th day of therapy. The total effective rate of UTI for patients with MMP-2 C-1306T C/C genotype was higher than those with C/T and T/T genotypes after the 7th day of therapy, which was lower in patients with MMP-9 C-1562T C/C and C/T genotypes than those with T/T genotype. The duration for symptoms in patients with MMP-9 C-1562T T/T genotype was shorter than those with C/C and C/T genotypes, which was less in patients with MMP-2 C-1306T C/C genotype than those with C/T and T/T genotypes. The improvement values of APACHE-II and Balthazar CTIS scores for patients with MMP-2 C-1306T C/C genotype were higher than those with C/T and T/T genotypes, which for patients with MMP-9 C-1562T C/C and C/T genotypes were lower than those with T/T genotype. These results demonstrated that MMP-2/MMP-9 gene polymorphism was associated with UTI efficacy for SAP.
Collapse
|
20
|
Lou C, Zhu Z, Zhao Y, Zhu R, Zhao H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol Rep 2016; 37:179-184. [PMID: 27878294 DOI: 10.3892/or.2016.5269] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.
Collapse
Affiliation(s)
- Chenghua Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Yaping Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binjiang, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|