1
|
Hung WT, Liu CJ, Liu YL, Ko KY, Chou SW, Chang HH, Yang YL, Lu MY, Hsu WM. Feasibility of 18F-DOPA and 18F-FDG PET/CT for guiding decision-making for localized incidental neuroblastoma in infants under 18 months of age. Pediatr Blood Cancer 2024; 71:e30983. [PMID: 38605509 DOI: 10.1002/pbc.30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Neuroblastoma varies widely in risk. Risk indicators in infants with incidental neuroblastoma refine treatment confidence for observation or intervention. The potential of functional imaging, particularly PET/CT, remains to be defined. PROCEDURE A retrospective review of infants under 18 months diagnosed with incidental neuroblastoma from 2008 to May 2022 in our institute was conducted. Before October 2015, incidental patients were treated similarly to symptomatic cases, undergoing biopsy or surgical excision upon diagnosis (early cohort). Post October 2015 (late cohort), treatment decisions were guided by PET/CT findings, with 18F-DOPA PET/CT confirming diagnosis and staging. For tumors with low 18F-FDG uptake, an expectant observation approach was considered. Patient characteristics, diagnostic methods, image findings at diagnosis, treatment courses, and responses were compared between cohorts. RESULTS Thirty infants less than 18 months were identified with incidental neuroblastoma and completed PET/CT at diagnosis. The early and late cohorts each comprised 15 patients. In the late cohort, nine out of 15 patients (60%) presented with localized FDG non-avid tumors were offered the option of expectant observation. Of these, seven patients opted for observation, thereby avoiding surgery. Treatment outcomes were comparable between early and late cohorts, except for one mortality of a patient who, despite showing 18F-FDG activity, declined treatment. CONCLUSIONS This study demonstrates the potential utility of 18F-DOPA and 18F-FDG PET/CT scans in aiding clinical decision-making for infants with localized, incidental neuroblastoma. Given the concerns regarding radiation exposure, such imaging may be valuable for cases with suspected metastasis, initial large tumor size, or growth during follow-up.
Collapse
Affiliation(s)
- Wan-Ting Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ju Liu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University and Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yin Ko
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Nuclear Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Shu-Wei Chou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Somme F, Bender L, Namer IJ, Noël G, Bund C. Usefulness of 18F-FDOPA PET for the management of primary brain tumors: a systematic review of the literature. Cancer Imaging 2020; 20:70. [PMID: 33023662 PMCID: PMC7541204 DOI: 10.1186/s40644-020-00348-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Contrast-enhanced magnetic resonance imaging is currently the standard of care in the management of primary brain tumors, although certain limitations remain. Metabolic imaging has proven useful for an increasing number of indications in oncology over the past few years, most particularly 18F-FDG PET/CT. In neuro-oncology, 18F-FDG was insufficient to clearly evaluate brain tumors. Amino-acid radiotracers such as 18F-FDOPA were then evaluated in the management of brain diseases, notably tumoral diseases. Even though European guidelines on the use of amino-acid PET in gliomas have been published, it is crucial that future studies standardize acquisition and interpretation parameters. The aim of this article was to systematically review the potential effect of this metabolic imaging technique in numerous steps of the disease: primary and recurrence diagnosis, grading, local and systemic treatment assessment, and prognosis. A total of 41 articles were included and analyzed in this review. It appears that 18F-FDOPA PET holds promise as an effective additional tool in the management of gliomas. More consistent prospective studies are still needed.
Collapse
Affiliation(s)
- François Somme
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France.
| | - Laura Bender
- Oncology Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
| | - Izzie Jacques Namer
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
- Strasbourg University, Unistra/CNRS UMR 7237, Strasbourg, France
| | - Georges Noël
- Radiotherapy Department, Paul Strauss Comprehensive Cancer Center, 3, rue de la porte de l'hôpital, F-67065, Strasbourg, France
- Strasbourg University, CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, F-67000, Strasbourg, France
| | - Caroline Bund
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
| |
Collapse
|
4
|
Patel CB, Fazzari E, Chakhoyan A, Yao J, Raymond C, Nguyen H, Manoukian J, Nguyen N, Pope W, Cloughesy TF, Nghiemphu PL, Czernin J, Lai A, Ellingson BM. 18F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: a cross-sectional study. J Neurooncol 2018; 139:399-409. [PMID: 29679199 PMCID: PMC6092195 DOI: 10.1007/s11060-018-2877-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION To report the potential value of pre-operative 18F-FDOPA PET and anatomic MRI in diagnosis and prognosis of glioma patients. METHODS Forty-five patients with a pathological diagnosis of glioma with pre-operative 18F-FDOPA PET and anatomic MRI were retrospectively examined. The volume of contrast enhancement and T2 hyperintensity on MRI images along with the ratio of maximum 18F-FDOPA SUV in tumor to normal tissue (T/N SUVmax) were measured and used to predict tumor grade, molecular status, and overall survival (OS). RESULTS A significant correlation was observed between WHO grade and: the volume of contrast enhancement (r = 0.67), volume of T2 hyperintensity (r = 0.42), and 18F-FDOPA uptake (r = 0.60) (P < 0.01 for each correlation). The volume of contrast enhancement and 18F-FDOPA T/N SUVmax were significantly higher in glioblastoma (WHO IV) compared with lower grade gliomas (WHO I-III), as well as for high-grade gliomas (WHO III-IV) compared with low-grade gliomas (WHO I-II). Receiver-operator characteristic (ROC) analyses confirmed the volume of contrast enhancement and 18F-FDOPA T/N SUVmax could each differentiate patient groups. No significant differences in 18F-FDOPA uptake were observed by IDH or MGMT status. Multivariable Cox regression suggested age (HR 1.16, P = 0.0001) and continuous measures of 18F-FDOPA PET T/N SUVmax (HR 4.43, P = 0.016) were significant prognostic factors for OS in WHO I-IV gliomas. CONCLUSIONS Current findings suggest a potential role for the use of pre-operative 18F-FDOPA PET in suspected glioma. Increased 18F-FDOPA uptake may not only predict higher glioma grade, but also worse OS.
Collapse
Affiliation(s)
- Chirag B Patel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elisa Fazzari
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Huytram Nguyen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jasmine Manoukian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nhung Nguyen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney Pope
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
| |
Collapse
|
6
|
Bell C, Dowson N, Puttick S, Gal Y, Thomas P, Fay M, Smith J, Rose S. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol 2015; 42:788-95. [PMID: 26162582 DOI: 10.1016/j.nucmedbio.2015.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite radical treatment therapies, glioma continues to carry with it a uniformly poor prognosis. Patients diagnosed with WHO Grade IV glioma (glioblastomas; GBM) generally succumb within two years, even those with WHO Grade III anaplastic gliomas and WHO Grade II gliomas carry prognoses of 2-5 and 2 years, respectively. PET imaging with (18)F-FDOPA allows in vivo assessment of the metabolism of glioma relative to surrounding tissues. The high sensitivity of (18)F-DOPA imaging grants utility for a number of clinical applications. METHODS A collection of published work about (18)F-FDOPA PET was made and a critical review was discussed and written. RESULTS A number of research papers have been published demonstrating that in conjunction with MRI, (18)F-FDOPA PET provides greater sensitivity and specificity than these modalities in detection, grading, prognosis and validation of treatment success in both primary and recurrent gliomas. In further comparisons with (11)C-MET, (18)F-FLT, (18)F-FET and MRI, (18)F-FDOPA has shown similar or better efficacy. Recently synthesis cassettes have become available, making (18)F-FDOPA more accessible. CONCLUSIONS According to the available data, (18)F-FDOPA PET is a viable radiotracer for imaging and treatment planning of gliomas. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE (18)F-FDOPA PET appears to be a viable radiopharmaceutical for the diagnosis and treatment planning of gliomas cases, improving on that of MRI and (18)F-FDG PET.
Collapse
Affiliation(s)
- Christopher Bell
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston QLD 4029, Australia; The University of Queensland, School of Medicine, St. Lucia QLD 4072, Australia
| | - Nicholas Dowson
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston QLD 4029, Australia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Yaniv Gal
- The University of Queensland, Centre for Medical Diagnostic Technologies in Queensland, St. Lucia QLD 4072, Australia
| | - Paul Thomas
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Herston QLD 4029, Australia
| | - Mike Fay
- The University of Queensland, School of Medicine, St. Lucia QLD 4072, Australia; Genesis Cancer Care, Lake Macquarie Private Hospital, 36 Pacific Highway, Gateshead NSW 2290, Australia; Specialised PET Services Queensland, Royal Brisbane and Women's Hospital, Herston QLD 4029, Australia
| | - Jye Smith
- The University of Queensland, School of Medicine, St. Lucia QLD 4072, Australia; Specialised PET Services Queensland, Royal Brisbane and Women's Hospital, Herston QLD 4029, Australia
| | - Stephen Rose
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston QLD 4029, Australia.
| |
Collapse
|