1
|
Zhe N, Li Q, Huang N, Li H, Chen H, Zhu P. Hotspots evolution and frontiers of immunotherapy for the treatment of acute myeloid leukemia: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2448888. [PMID: 39819314 DOI: 10.1080/21645515.2024.2448888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Given the growing significance of immunotherapy in addressing the limitations of conventional acute myeloid leukemia (AML) treatments, this study aimed to elucidate the hotspot evolution and frontiers of immunotherapy in AML using bibliometric analysis. With a strict retrieval strategy applied in the Web of Science Core Collection, 2411 publications were obtained and exported. The temporal and geographical distributions of these publications and the countries, institutions, journals, and authors who contributed to the field were investigated. An in-depth content analysis was performed. The United States had various research institutions dedicated to AML immunotherapy. Frontiers in Immunology had the highest number of publications, but Blood had the highest H-index. Marion Subklewe was the most productive author. The current research hotspots of AML immunotherapy included chimeric antigen receptor-T-cell therapy, antibody-based immunotherapies, immune checkpoint blockade, and combination therapy, highlighting the key aspects of immunotherapy for AML treatment and providing comprehensive insights into the research status and advances in this field. Novel immunotherapies combined with chemotherapy may become the primary focus of AML treatment.
Collapse
Affiliation(s)
- Nana Zhe
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Qiang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Nanqu Huang
- Department of Pharmacy, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongyun Chen
- Department of Dermatology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Pinwei Zhu
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
2
|
Luo Y, Zhou S, Song Y, Huang WC, Wilding GE, Jablonski J, Quinn B, Lovell JF. Iterative selection of lipid nanoparticle vaccine adjuvants for rapid elicitation of tumoricidal CD8⁺ T cells. Bioact Mater 2025; 48:189-199. [PMID: 40046011 PMCID: PMC11880734 DOI: 10.1016/j.bioactmat.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
A challenge for cancer vaccines is to elicit immune responses of sufficient magnitude to control malignant tumor growth and spread. In this study, we iteratively screened a panel of 22 lipid-phase vaccine adjuvants in mice for the elicitation of neoantigen-specific CD8⁺ T cell responses, using an integrated peptide-lipid nanoparticle approach. CL401, a dual Toll-like receptor 2/7 (TLR2/7) adjuvant rapidly induced neoantigen-specific T cell responses and improved lymphatic drainage and uptake of the particle. Additional rounds of in vivo screening identified complementary adjuvants which targeted TLR4 (3D6A-PHAD adjuvant), TLR8 (motolimod), and inflammasome (QS-21) pathways and synergized to enhance cytokine secretion in antigen presenting cells and vaccine-elicited neoantigen-specific CD8⁺ T cells. Co-delivery of adjuvants and antigens led to effective immune responses which regressed large established tumors, synergized with immune checkpoint blockade, and inhibited lung nodules in an experimental metastasis model, without overt toxicity or reactogenicity. We conclude that iterative adjuvant screening, performed in mice in vivo, can identify useful adjuvant combinations that hold potential for therapeutic cancer vaccine research.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Yiting Song
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | | | - James Jablonski
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Breandan Quinn
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
3
|
Afrashteh F, Seyedpour S, Rezaei N. The therapeutic effect of mRNA vaccines in glioma: a comprehensive review. Expert Rev Clin Immunol 2025:1-13. [PMID: 40249391 DOI: 10.1080/1744666x.2025.2494656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor, with glioblastoma being the most lethal type due to its heterogeneous and invasive nature of the cancer. Current therapies have low curative success and are limited to surgery, radiotherapy, and chemotherapy. More than 50% of patients become resistant to chemotherapy, and tumor recurrence occurs in most patients following an initial course of therapy. Therefore, developing novel, effective strategies for glioma treatment is essential. Cancer vaccines are novel therapies that demonstrate advantages over conventional methods and, therefore, may be promising options for treating glioma. AREAS COVERED This article provided a critical review of pre-clinical and clinical studies that explored appropriate tumor antigen candidates for developing mRNA vaccines and discussed their clinical application in glioma patients. Medline database, PubMed, and ClinicalTrials.gov were searched for glioma vaccine studies published before 2025 using related keywords. EXPERT OPINION mRNA vaccines are promising strategies for treating glioma because they are efficient, cost-beneficial, and have lower side effects than other types such as peptide or DNA-based vaccines.
Collapse
Affiliation(s)
- Fatemeh Afrashteh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhu Y, Wunderlich Z, Lander AD. Epithelial cell competition is promoted by signaling from immune cells. Nat Commun 2025; 16:3710. [PMID: 40251197 PMCID: PMC12008283 DOI: 10.1038/s41467-025-59130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
In epithelial tissues, juxtaposition of cells of different phenotypes can trigger cell competition, a process whereby one type of cell drives death and extrusion of another. During growth and homeostasis, cell competition is thought to serve a quality control function, eliminating cells that are "less fit". Tissues may also attack and eliminate newly arising tumor cells, exploiting mechanisms shared with other instances of cell competition, but that differ, reportedly, in the involvement of the immune system. Whereas immune cells have been shown to play a direct role in killing tumor cells, this has not been observed in other cases of cell competition, suggesting that tissues recognize and handle cancer cells differently. Here, we challenge this view, showing that, in the fruit fly Drosophila, innate immune cells play similar roles in cell killing during classical cell competition as in eliminating tumors. These findings suggest that immune suppression of cancer may exploit the same mechanisms as are involved in promoting phenotypic uniformity among epithelial cells.
Collapse
Affiliation(s)
- Yilun Zhu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Yao C, Ma Q, Wang H, Wu B, Dai H, Xu J, Bai J, Xu F, Dube A, Wang C. Targeting myeloid cells with platelet-derived extracellular vesicles to overcome resistance of immune checkpoint blockade therapy. Biomaterials 2025; 321:123336. [PMID: 40233711 DOI: 10.1016/j.biomaterials.2025.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Immune checkpoint blockade (ICB) therapy is designed to boost antitumor immune responses, yet it may unintentionally alter the chemokine profile, which can attract suppressive myeloid cells to the tumor, leading to acquired immune resistance. To address this, we developed a platform that targets myeloid cells post-ICB therapy using platelet-derived extracellular vesicles (PEVs). Unlike free drug administration, this system selectively targets anti-PD-L1-treated tumors through the CXCL-CXCR2 axis, effectively redirecting myeloid cells and overcoming ICB resistance. Consequently, mice exhibited robust responses to subsequent ICB therapy cycles, resulting in significantly enhanced tumor clearance and prolonged survival. The PEVs' targeting capability was also effective in tumors treated with chemotherapy and radiotherapy, suggesting a wide range of potential applications. In summary, PEVs offer a versatile platform for targeted immunomodulation to counteract acquired immune resistance during ICB therapy.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingle Ma
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bingbing Wu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jialu Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Fang Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535, South Africa
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
6
|
Duminuco A, Novello G, Mauro E, Scalisi E, Del Fabro V, Sambataro D, Palumbo G, Di Raimondo F, Romeo D. Chemotherapy extravasation: diagnosis, prevention and management. J Chemother 2025:1-13. [PMID: 40205769 DOI: 10.1080/1120009x.2025.2488599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Chemotherapy extravasation, the unintended leakage of cytotoxic drugs into surrounding tissues, is a significant complication in oncological treatments, potentially leading to severe tissue damage and long-term consequences. This review explores the factors influencing extravasation risk, including infusion site, patient comorbidities and the physicochemical properties of drugs. Early detection is crucial to prevent irreversible damage. Treatment strategies vary based on the type of drug involved, ranging from topical dimethyl sulfoxide and hyaluronidase to specific antidotes like dexrazoxane for anthracycline extravasations. Preventive measures, including proper catheter placement, drug dilution and patient monitoring, are essential to mitigate risks. Effective management requires a multidisciplinary approach, combining prompt recognition, intervention and ongoing education for healthcare providers to improve patient safety and outcomes in chemotherapy administration. Enhanced training on the early signs of extravasation and advancements in treatment modalities offer critical support in minimizing adverse effects, ensuring timely and appropriate care.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | - Giuseppe Novello
- Department of Medical Oncology, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | - Elisa Mauro
- Hematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | - Elvira Scalisi
- Hematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | | | - Daniela Sambataro
- Faculty of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
| | - Giuseppe Palumbo
- Hematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | | | - Demetria Romeo
- Unità Farmaci Antiblastici, Farmacia I, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| |
Collapse
|
7
|
Kulkarni AD, Mukarrama T, Barlow BR, Kim J. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomater Sci 2025; 13:1939-1959. [PMID: 40099377 PMCID: PMC11980607 DOI: 10.1039/d4bm01677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Immunotherapy has been at the forefront of cancer treatment research in recent years due to an increased understanding of the immune system's role in cancer and the substantial benefits it has demonstrated compared to conventional treatment methods. In particular, immune cell-based approaches utilizing T cells, natural killer (NK) cells, macrophages, and more have shown great potential as cancer treatments. While these treatments hold promise, there are still numerous issues that limit their clinical translation, including a lack of understanding of their mechanisms and inconsistent responses to treatment. Traditionally, tissue or blood samples are collected as a means of monitoring treatment progression. However, these in vitro diagnostics are invasive and provide limited information about the real-time status of the treatment or its long-term effectiveness. To address these limitations, novel non-invasive imaging modalities have been developed. These include optical imaging, X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT), and photoacoustic (PA) imaging. This review focuses on methods for tracking cell-based cancer immunotherapies using these in vivo imaging modalities, thereby enhancing real-time monitoring of their therapeutic effect and predictions of their long-term efficacy.
Collapse
Affiliation(s)
- Anika D Kulkarni
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
| | - Tasneem Mukarrama
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Jinhwan Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| |
Collapse
|
8
|
Köylü B, Kıkılı Cİ, Dikensoy Ö, Selçukbiricik F. Late-onset recurrent immune checkpoint inhibitor-related pneumonitis after cessation of pembrolizumab: a case report. Immunotherapy 2025:1-4. [PMID: 40171983 DOI: 10.1080/1750743x.2025.2488609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Immune-related adverse events typically occur during the early phases of immune checkpoint inhibitor therapy. However, late-onset immune-related adverse events can still arise long after the immune checkpoint inhibitor therapy has ended. Immune checkpoint inhibitor-related pneumonitis warrants special attention for risk assessment and early detection due to its potential for serious outcomes, including hospitalization and death. Despite its rarity, late-onset immune checkpoint inhibitor-related pneumonitis should be considered in the differential diagnosis for dyspnea in patients with a history of immune checkpoint inhibitor therapy to prevent morbidity and mortality. In this case report, we present a case of an 84-year-old female patient suffering from locally advanced triple-negative breast cancer and late-onset immune checkpoint inhibitor-related pneumonitis requiring hospitalization 104 days after the last cycle of pembrolizumab. Following successful treatment of late-onset immune checkpoint inhibitor-related pneumonitis with corticosteroids, a recurrence of immune checkpoint inhibitor-related pneumonitis occurred a month later. Corticosteroid therapy was reinitiated, gradually tapered after radiological improvement, and eventually discontinued. The patient remains in remission from breast cancer. For patients with a history of immune checkpoint inhibitor therapy, medical vigilance, accurate diagnosis, and timely management of late-onset immune checkpoint inhibitor-related pneumonitis are crucial.
Collapse
Affiliation(s)
- Bahadır Köylü
- Department of Medical Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Cevat İlteriş Kıkılı
- Department of Medical Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Öner Dikensoy
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Fatih Selçukbiricik
- Department of Medical Oncology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Lai N, Farman A, Byrne HM. The Impact of T-cell Exhaustion Dynamics on Tumour-Immune Interactions and Tumour Growth. Bull Math Biol 2025; 87:61. [PMID: 40172752 PMCID: PMC11965189 DOI: 10.1007/s11538-025-01433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Tumours evade immune surveillance through a number of different immunosuppressive mechanisms. One such mechanism causes cytotoxic T-cells, a major driving force of the immune system, to differentiate to a state of 'exhaustion', rendering them less effective at killing tumour cells. We present a structured mathematical model that focuses on T-cell exhaustion and its effect on tumour growth. We compartmentalise cytotoxic T-cells into discrete subgroups based on their exhaustion level, which affects their ability to kill tumour cells. We show that the model reduces to a simpler system of ordinary differential equations (ODEs) that describes the time evolution of the total number of T-cells, their mean exhaustion level and the total number of tumour cells. Numerical simulations of the model equations reveal how the exhaustion distribution of T-cells changes over time and how it influences the tumour's growth dynamics. Complementary bifurcation analysis shows how altering key parameters significantly reduces the tumour burden, highlighting exhaustion as a promising target for immunotherapy. Finally, we derive a continuum approximation of the discrete ODE model, which admits analytical solutions that provide complementary insight into T-cell exhaustion dynamics and their effect on tumour growth.
Collapse
Affiliation(s)
- Nicholas Lai
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| | - Alexis Farman
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Department of Mathematics, University College London, London, WC1E 6BT, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
10
|
Idossa D, Herrmann J, Ruddy KJ. Outcomes and Predictors of Severity of Immunotherapy-Related Myocarditis. JACC CardioOncol 2025; 7:249-251. [PMID: 40246382 DOI: 10.1016/j.jaccao.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Affiliation(s)
- Dame Idossa
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
11
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
12
|
Alshehry Y, Liu X, Li W, Wang Q, Cole J, Zhu G. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy. AAPS J 2025; 27:66. [PMID: 40102316 DOI: 10.1208/s12248-025-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer immunotherapy is poised to be one of the major modalities for cancer treatment. Messenger RNA (mRNA) has emerged as a versatile and promising platform for the development of effective cancer immunotherapy. Delivery systems for mRNA therapeutics are pivotal for their optimal therapeutic efficacy and minimal adverse side effects. Lipid nanoparticles (LNPs) have demonstrated a great success for mRNA delivery. Numerous LNPs have been designed and optimized to enhance mRNA stability, facilitate transfection, and ensure intracellular delivery for subsequent processing. Nevertheless, challenges remain to, for example, improve the efficiency of endosomal escape and passive targeting. This review highlights key advancements in the development of mRNA LNPs for cancer immunotherapy. We delve into the design of LNPs for mRNA delivery, encompassing the chemical structures, characterization, and structure-activity relationships (SAR) of LNP compositions. We discuss the key factors influencing the transfection efficiency, passive targeting, and tropism of mRNA-loaded LNPs. We also review the preclinical and clinical applications of mRNA LNPs in cancer immunotherapy. This review can enhance our understanding in the design and application of LNPs for mRNA delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Wenhua Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Janét Cole
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America.
- Bioinnovations in Brain Cancer, Biointerfaces Institute, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, United States of America.
| |
Collapse
|
13
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Buyukgolcigezli I, Tenekeci AK, Sahin IH. Opportunities and Challenges in Antibody-Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment. Cancers (Basel) 2025; 17:958. [PMID: 40149295 PMCID: PMC11939980 DOI: 10.3390/cancers17060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The antibody, linker, and payload moieties all play a significant role in giving the ADC its unique therapeutic potential. The antibody subclass employed in ADCs is determined based on relative individual receptor affinities and pharmacokinetics. Meanwhile, the linker used in an ADC can either be cleavable or non-cleavable. ADC therapy comprises antibody-dependent mechanisms in addition to the direct cytotoxic effects of the payload. These include antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, as well as the "bystander effect", which refers to the diffusion of a portion of the cytotoxic molecules out of the target cell, exerting its cytotoxic effect on the adjacent cells. Target antigens of ADCs are expected to be expressed on the membranes of the cancer cells facing the external matrix, although new approaches utilize antigens regarding tumor-associated cells, the tumor microenvironment, or the tumor vasculature. These target antigens of ADCs not only determine the efficacy of these agents but also impact the off-targets and related adverse effects. The majority of ADC-related toxicities are associated with off-targets. The proposed mechanisms of ADC resistance include disrupted intracellular drug trafficking, dysfunctional lysosomal processing, and the efflux of the cytotoxic molecule via ATP-binding cassette (ABC) transporters. The latter mechanism is especially prominent for multi-drug-resistant tumors. An important limitation of ADCs is the penetration of the conjugate into the tumor microenvironment and their delivery to target cancer cells. Cancerous tissues' vascular profile and the steric "binding site barrier" formed around the peripheral vessels of tumors stand as potential challenges of ADC therapy for solid tumors. As research efforts focus on reducing toxicities, overcoming resistance, and improving pharmacokinetics, ADC options for cancer therapy are expected to continue to diversify, including standalone approaches and combination therapies.
Collapse
Affiliation(s)
| | - Ates Kutay Tenekeci
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Wang Y, Yang X, Liu Y, Li Y. A review of common immunotherapy and nano immunotherapy for acute myeloid leukemia. Front Immunol 2025; 16:1505247. [PMID: 40129984 PMCID: PMC11931025 DOI: 10.3389/fimmu.2025.1505247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy. Traditional chemotherapy methods not only bring serious side effects, but also lead to high recurrence rate and drug resistance in some patients. However, as an emerging therapeutic strategy, immunotherapy has shown great potential in the field of AML treatment in recent years. At present, common immunotherapy methods for AML include monoclonal antibodies, CAR-T cell therapy, and immune checkpoint inhibitors. With the deepening of research and technological progress, especially the application of nanotechnology in medicine, new immunotherapy is expected to become one of the important means for the treatment of acute myeloid leukemia in the future.
Collapse
Affiliation(s)
- Yaoyao Wang
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Xiancong Yang
- Laboratory Department, Qilu Hospital of ShanDong University Dezhou Hospital, Dezhou, Shandong, China
| | - Yalin Liu
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
16
|
Gao Z, Azar J, Erstad D, Sun Z, Janakiraman H, Chung D, Lewin D, Lee HS, Van Buren G, Fisher W, Rubinstein MP, Camp ER. Tumor Immune Microenvironment Differences Associated With Racial Disparities in Pancreatic Cancer. J Surg Res 2025; 307:21-32. [PMID: 39970547 DOI: 10.1016/j.jss.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Racial differences in antitumoral immunity have been identified in a variety of cancers and may contribute to survival disparities, but limited data exist exploring the molecular differences in pancreatic adenocarcinoma (PDAC). Using racially diverse PDAC datasets, we explored biologic differences that may drive disparities between African American (AA) and European American (EA) PDAC patients. METHODS Genomic PDAC mutational data was analyzed for mutational differences based on race. In a separate cohort, surgical PDAC specimens were processed for both tissue microarray and multiplex gene expression analysis using NanoString. RESULTS Of the 4679 patient samples in the mutational dataset, AA PDAC patients had significantly more TP53 mutations compared to the EA cohort. The tissue microarray included 12 AA and 41 EA surgically resected treatment-naive PDAC samples. NanoString analysis revealed significant differences between AA and EA groups in immunologic gene annotations (P < 0.05). CONCLUSIONS In the present study, we demonstrated that across racially diverse datasets, there exist molecular and microenvironmental differences between AA and EA patients that may contribute to cancer survival disparities. Defining molecular differences underlying PDAC racial disparities is an essential step in advancing care and improving outcomes for AA patients that suffer worse survival across cancer types.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, Illinois
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - Mark P Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Kumar S, Koseki Y, Tanita K, Shibata A, Mizutani A, Kasai H. SN-38-indoximod conjugate: carrier free nano-prodrug for cancer therapy. Ther Deliv 2025; 16:217-226. [PMID: 39887189 PMCID: PMC11875466 DOI: 10.1080/20415990.2025.2458449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The integration of immunotherapy alongside chemotherapy represents a crucial approach in the treatment of cancer. Herein we report the SN-38-indoximod conjugate nano-prodrug to address the difficulties encountered by individuals. In this prodrug, SN-38 is connected to indoximod through a specific disulfide linker, which enables the release of the components in response to the tumor microenvironment characterized by elevated levels of glutathione, thereby facilitating programmed chemoimmunotherapy. RESULTS SN-38-indoximod conjugate was synthesized and fabricated to nano-prodrug by reprecipitation method. It showed comparable anti-cancer activity against A549 cells than SN-38 (IC50 = 0.24 ± 0.01 µM) with IC50 value 0.32 ± 0.04 µM. It inhibited 90% A549 cell at very lower concentration (IC90 = 6.07 ± 0.41 µM) as compared with SN-38 (IC90 = 24.60 ± 1.24 µM) and mixture of SN-38: indoximod (1:1, IC90 >30 µM). The nano-prodrug showed better size distribution profile and dispersion stability contains nanoparticles in effective size range (80-160 nm) required for the EPR effect. CONCLUSION This research offers valuable insights into the advancement of conjugate nano-prodrugs exhibiting synergistic pharmacological effects, while also presenting novel opportunities for the design of prodrug molecules capable of releasing drugs in response to diverse triggers.
Collapse
Affiliation(s)
- Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Keita Tanita
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Aki Shibata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Asuka Mizutani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Pyreddy S, Kim S, Miyamoto W, Talib Z, GnanaDev DA, Rahnemai-Azar AA. Current Advances in Immunotherapy Management of Esophageal Cancer. Cancers (Basel) 2025; 17:851. [PMID: 40075698 PMCID: PMC11898678 DOI: 10.3390/cancers17050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Esophageal cancer is one of the most common and deadliest cancers worldwide. Rates of esophageal cancer worldwide have been steadily rising over the past decade due to higher incidence of gastroesophageal reflux disease (GERD). Current therapies include surgical resection, chemotherapy, and limited targeted therapies. One obstacle to care is tumor cells' ability to evade immune surveillance, which can render certain therapeutics ineffective. Immunotherapy provides a new paradigm to cancer treatment, which has proven to be effective in evasive tumors. In recent years, PD-1/PD-L1 and CLTA-4 inhibitors have been used as frontline treatment and have shown to be extremely effective in the treatment of hard-to-treat tumors. Here, we aim to analyze the current literature regarding current therapeutics along with emerging techniques and future receptor targets for immunotherapy.
Collapse
Affiliation(s)
- Sagar Pyreddy
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (S.P.); (S.K.); (W.M.); (Z.T.)
| | - Sarah Kim
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (S.P.); (S.K.); (W.M.); (Z.T.)
| | - William Miyamoto
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (S.P.); (S.K.); (W.M.); (Z.T.)
| | - Zohray Talib
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (S.P.); (S.K.); (W.M.); (Z.T.)
| | - Dev A. GnanaDev
- Department of Surgery, Arrowhead Regional Medical Center, Colton, CA 92324, USA;
| | - Amir A. Rahnemai-Azar
- Division of Surgical Oncology, Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA 92324, USA
| |
Collapse
|
19
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
20
|
Rangel-López R, Franco-Molina MÁ, Rodríguez-Padilla C, Zárate-Triviño DG. Gold Nanoparticles Synthesized with Triple-Negative Breast Cancer Cell Lysate Enhance Antitumoral Immunity: A Novel Synthesis Method. Pharmaceuticals (Basel) 2025; 18:330. [PMID: 40143109 PMCID: PMC11945454 DOI: 10.3390/ph18030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Gold nanoparticles enhance immunity, promotes antigen uptake by antigen-presenting cells (APCs), and boost the response against tumor antigens; therefore, they are a promising delivery vehicle. Tumor lysates have shown favorable responses as inductors of anti-cancer immunity, but the effectiveness of these treatments could be improved. Hybrid nanosystems gold nanoparticles with biomolecules have been show promising alternative on uptake, activation and response on immune system. Objectives: This study's objective was to develop a method of synthesizing gold nanoparticles employing a triple-negative breast cancer (4T1) cell lysate (AuLtNps) as a reducing agent to increase immunogenicity against breast cancer cells. Methods: Nanoparticle formation, size, and ζ potential were confirmed by surface plasmon resonance, dynamic light scattering, and transmission electron microscopy. Protein concentration was quantified using a Pierce BCA assay. The cytotoxic effects of treatments on murine macrophages were assessed, along with nanoparticle and tumor lysate uptake via epifluorescence microscopy. Using a murine model, cytokine secretion profiles were determined, and the efficacy in inhibiting the implantation of a 4T1 model was evaluated. Results/Conclusions: AuLtNps exhibited higher protein content than tumor lysate alone, leading to increased uptake and phagocytosis in murine macrophages, as confirmed by epifluorescence microscopy. Cytokine secretion analysis showed a proinflammatory response, with increased CD8+ and CD22+ lymphocytes and upregulation of APC markers (CD14, CD80, CD86, and MHC II+). Splenocytes demonstrated specific lysis of up to 40% against 4T1 tumor cells. In a murine model, AuLtNPs effectively inhibited tumor implantation, achieving an improved 90-days survival rate, highlighting their potential as an immunotherapy for triple-negative breast cancer.
Collapse
|
21
|
Kiełbowski K, Plewa P, Zadworny J, Bakinowska E, Becht R, Pawlik A. Recent Advances in the Development and Efficacy of Anti-Cancer Vaccines-A Narrative Review. Vaccines (Basel) 2025; 13:237. [PMID: 40266115 DOI: 10.3390/vaccines13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025] Open
Abstract
Immunotherapy is an established and efficient treatment strategy for a variety of malignancies. It aims to boost the anticancer properties of one's own immune system. Several immunotherapeutic options are available, but immune checkpoint blockers represent the most widely known and investigated. Anticancer vaccines represent an evolving area of immunotherapy that stimulate antigen-presenting cells, cytotoxic responses of CD8+ T cells, and the presence of memory T cells, among others. Over the years, different approaches for anticancer vaccines have been studied, such as mRNA and DNA vaccines, together with dendritic cell- and viral vector-based vaccines. Recently, an accumulating number of clinical studies have been performed to analyze the safety and potential efficacy of these agents. The aim of this review is to summarize recent advances regarding different types of therapeutic anticancer vaccines. Furthermore, it will discuss how recent advances in preclinical models can enhance clinical outcomes.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jan Zadworny
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
Sherpally D, Manne A. Advancing Immunotherapy in Pancreatic Cancer: A Brief Review of Emerging Adoptive Cell Therapies. Cancers (Basel) 2025; 17:589. [PMID: 40002184 PMCID: PMC11853216 DOI: 10.3390/cancers17040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate (13%) among major cancers and is the third leading cause of cancer-related deaths in the United States. The high lethality of this cancer is attributed to its insidious onset, late-stage diagnosis, rapid progression, and limited treatment options. Addressing these challenges requires a deeper understanding of the complex tumor microenvironment to identify novel therapeutic targets. Newer approaches like adoptive cell therapy have shown remarkable success in treating hematological malignancies, but their application in solid tumors, particularly pancreatic cancer, is still in the early stages of development. ACT broadly involves isolating immune cells (T lymphocytes, Natural Killer cells, and macrophages) from the patient, followed by genetic engineering to enhance and mount a specific anti-tumor response. Various ACT modalities are under investigation for pancreatic cancer, including chimeric antigen receptor T cells (CAR-T), chimeric antigen receptor NK cells (CAR-NK), tumor-infiltrating lymphocytes (TIL), T-cell receptor (TCR)-engineered T cells, and cytokine-induced killer cells (CIK). Major hurdles have been identifying actionable tumor antigens and delivering focused cellular therapies to overcome the immunosuppressive and dense fibrotic stroma surrounding the pancreatic cancer. Further studies are needed to explore the limitations faced by cellular therapy in pancreatic cancer and identify novel combination treatment approaches in order to improve clinical outcomes.
Collapse
Affiliation(s)
- Deepak Sherpally
- Department of Internal Medicine, New York Medical College, Metropolitan, New York, NY 10029, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| |
Collapse
|
23
|
Mareboina M, Bakhl K, Agioti S, Yee NS, Georgakopoulos-Soares I, Zaravinos A. Comprehensive Analysis of Granzymes and Perforin Family Genes in Multiple Cancers. Biomedicines 2025; 13:408. [PMID: 40002821 PMCID: PMC11853441 DOI: 10.3390/biomedicines13020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cancer remains a significant global health concern, with immunotherapies emerging as promising treatments. This study explored the role of perforin-1 (PRF1) and granzymes A, B and K (GZMA, GZMB and GZMK) in cancer biology, focusing on their impact on tumor cell death and immune response modulation. Methods: Through a comprehensive genomic analysis across various cancer types, we explored the differential expression, mutation profiles and methylation patterns of these genes, providing insights into their potential as therapeutic targets. Furthermore, we investigated their association with immune cell infiltration and pathway activation within the tumor microenvironment in each tumor type. Results: Our findings revealed distinct expression patterns and prognostic implications for PRF1, GZMA, GZMB and GZMK across different cancers, highlighting their multifaceted roles in tumor immunity. We found increased immune infiltration across all tumor types and significant correlations between the genes of interest and cytotoxic T cells, as well as the most significant survival outcomes in breast cancer. We also show that granzymes and perforin-1 are significantly associated with indicators of immunosuppression and T cell dysfunction within patient cohorts. In skin melanoma, glioblastoma, kidney and bladder cancers, we found significant correlations between the genes of interest and patient survival after receiving immune-checkpoint inhibition therapy. Additionally, we identified potential associations between the mRNA expression levels of these genes and drug sensitivity. Conclusions: Overall, this study enhances our understanding of the molecular mechanisms underlying tumor immunity and provides valuable insights into the potential therapeutic implications of PRF1, GZMA, GZMB and GZMK in cancer treatment.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Katrina Bakhl
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Stephanie Agioti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Nelson S. Yee
- Department of Medicine, Division of Hematology-Oncology, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA 17033, USA;
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
24
|
Jiang L, Huang Q, Shi Z, Yang Y. Bibliometric analysis of rhein in the treatment of tumors. Front Oncol 2025; 15:1550016. [PMID: 39980548 PMCID: PMC11839677 DOI: 10.3389/fonc.2025.1550016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background Rhein is an anthraquinone compound with a variety of biological activities. It has inhibitory effects on liver cancer, breast cancer, lung cancer, oral cancer, gastric cancer, and other cancers. However, a comprehensive bibliometric review of this field has not yet been published. Objective This study aims to investigate and evaluate the current research trends and directions about the antitumor properties of rhein using bibliometric analysis. Methods The literature related to rhein in cancer treatment from 2003 to 2023 was retrieved from the Web of Science Core Collection (WoSCC) database, and the annual number of publications, main authors, major institutions, keyword clustering, and keyword bursts were visually analyzed using CiteSpace 6.3.R1 software. This study aims to discuss the status quo, hotspots, and development trends of rhein research over the past 20 years. Results A total of 220 articles were retrieved from the core collection database, and the number of articles related to treating tumors with rhein increased annually. Among them, Chung, Jing Gung has the highest number of articles in this field, but most researchers lack cooperation with each other. The institutions with the highest number of articles were the Nanjing University of Chinese Medicine (13 articles) and China Medical University (Taiwan) (13 articles). Research hotspots include the promotion of apoptosis, endoplasmic reticulum stress, inhibition of proliferation, drug resistance, and nanoparticles. Conclusion Rhein exerts antitumor effects by inducing cell apoptosis, controlling metastasis, and inhibiting proliferation. However, owing to its poor water solubility, in recent years, functional modification of its functional groups or production of rhein nanoparticles to enhance its bioavailability and antitumor effects has become a hot research direction in the future.
Collapse
Affiliation(s)
- Lan Jiang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Qian Huang
- Chongqing Three Gorges Medical College, Chongqing, China
| | - Zhongquan Shi
- Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi Yang
- Department of Pharmacy, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
25
|
Moldoveanu C, Mangalagiu II, Zbancioc G, Danac R, Tataringa G, Zbancioc AM. Anticancer Potential of Azatetracyclic Derivatives: In Vitro Screening and Selective Cytotoxicity of Azide and Monobrominated Compounds. Molecules 2025; 30:702. [PMID: 39942805 PMCID: PMC11820345 DOI: 10.3390/molecules30030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the antiproliferative activity of three classes of benzo[f]pyrrolo[1,2-a]quinoline azatetracyclic derivatives. All compounds were screened against 60 cancer cell lines at a single dose of 10 μM. When we compared the activity of the three classes of azatetracyclic derivatives (azide, monobrominated and dibrominated), we found that the dibrominated compounds were less active, while the azides were the most active molecules. Compounds 3b and 5a, showing the best growth inhibition profile of all the drugs evaluated, were selected for the second stage of a full five-dose testing. According to the results of the in vitro screening, compounds 3b and 5a exhibit good to moderate anticancer activity (in micromolar range) against all nine cancer sub-panels, with compound 5a being more selective than compound 3b. Both compounds presented better activity than phenstatin on T-47D breast cancer cells, with compound 3b also being more active on SK-MEL-28 melanoma cells, while compound 5a was more active than phenstatin on COLO 205 colon cancer cells. As for the probable mechanism of action, the benzoquinoline derivatives could act as PI5P4Kα and PI5P4Kβ inhibitors or topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Costel Moldoveanu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
- Institute of Interdisciplinary Research—CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Gheorghita Zbancioc
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1, 700506 Iasi, Romania; (C.M.); (I.I.M.)
| | - Gabriela Tataringa
- Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 University Street, 700115 Iasi, Romania; (G.T.); (A.M.Z.)
| | - Ana Maria Zbancioc
- Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 University Street, 700115 Iasi, Romania; (G.T.); (A.M.Z.)
| |
Collapse
|
26
|
Yan J, Wei D, Zhao Z, Sun K, Sun Y. Osteosarcoma-targeting Pt IV prodrug amphiphile for enhanced chemo-immunotherapy via Ca 2+ trapping. Acta Biomater 2025; 193:474-483. [PMID: 39719178 DOI: 10.1016/j.actbio.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Platinum (PtII)-based anticancer agents exhibit a lack of selectivity in the treatment of osteosarcoma, resulting in significant toxicity. Furthermore, immune surveillance withinthe tumor microenvironment impedes the uptake of platinum drugs by osteosarcoma cells. To overcome these challenges, an oxaliplatin-based PtIV prodrug amphiphile (Lipo-OXA-ALN) was designed and synthesized by incorporatingan osteosarcoma-targeting alendronate (ALN) alongside a lipid tail. The lipid nanoparticles (ALN-OXA), which self-assemble from Lipo-OXA-ALN, enhanced intracellular platinum uptake due to their superior Ca2+ trapping ability and significantly inhibit osteosarcoma cell activity. Moreover, ALN-OXA exhibited potent targeting capabilities, effectively suppressing osteosarcoma growth while preventing bone destruction. Importantly, ALN-OXA induces a series of immune responses characterized by the activation of immune cells, maturation of dendritic cells, and secretion of related cytokines, followed by the activation and infiltration of T lymphocytes and a significant increase in the ratio of cytotoxic T cells. Additionally, the ratio of M1/M2 macrophages increased markedly after ALN-OXA treatment, suggesting potential reprogramming of the tumor microenvironment by ALN-OXA. Overall, the improved therapeutic efficacy against osteosarcoma demonstrates that the PtIV prodrug amphiphile represents a promising strategy for combining targeted chemotherapy with strategies aimed at reversing immune suppression. STATEMENT OF SIGNIFICANCE: Platinum (PtII)-based chemotherapy for osteosarcoma faces challenges due to poor tumor selectivity, leading to suboptimal efficacy and increased toxicity. Additionally, the osteosarcoma microenvironment impedes effective drug delivery. To overcome these limitations, we developed an oxaliplatin-based PtIV prodrug nanoparticle (ALN-OXA) for targeted chemo-immunotherapy. ALN-OXA showed significant in vivo efficacy, effectively preventing bone damage and enhancing the immune microenvironment to improve treatment outcomes. This innovative approach not only targets the tumor more efficiently but also boosts immune response, offering a promising strategy for tumor blockade, tumor starvation, and other therapeutic applications in osteosarcoma treatment.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Zijian Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
27
|
Zhang C, Wang J, Dang P, Wei Y, Wang X, Brothwell J, Sun Y, Zhu H, So K, Liu J, Wang Y, Lu X, Spinola S, Zhang X, Cao S. A physics informed neural network approach to quantify antigen presentation activities at single cell level using omics data. RESEARCH SQUARE 2025:rs.3.rs-5629379. [PMID: 39877095 PMCID: PMC11774464 DOI: 10.21203/rs.3.rs-5629379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses. Here, we present PSAA (PINN-empowered Systems Biology Analysis of Antigen Presentation Activity), which is designed to estimate sample-wise MHC class I and class II antigen presentation activity using bulk, single-cell, and spatially resolved transcriptomics or proteomics data. By reconstructing MHC pathways and employing pathway flux estimation, PSAA offers a detailed, stepwise quantification of MHC pathway activity, enabling predictions of gene-specific impacts and their downstream effects on immune interactions. Benchmarked across diverse omics datasets and experimental validations, PSAA demonstrates a robust prediction accuracy and utility across various disease contexts. In conclusion, PSAA and its downstream functions provide a comprehensive framework for analyzing the dynamics of MHC antigen presentation using omics data. By linking antigen presentation to immune cell activity and clinical outcomes, PSAA both elucidates key mechanisms driving disease progression and uncovers potential therapeutic targets.
Collapse
Affiliation(s)
- Chi Zhang
- Indiana University School of Medicine
| | | | | | | | | | | | - Yifan Sun
- Indiana University School of Medicine
| | | | - Kaman So
- Indiana University School of Medicine
| | | | - Yijie Wang
- Computer Science Department, Indiana University
| | | | | | | | - Sha Cao
- Oregon Health & Science University
| |
Collapse
|
28
|
D'Alonzo RA, Keam S, Gill S, Rowshanfarzad P, Nowak AK, Ebert MA, Cook AM. Fractionated low-dose radiotherapy primes the tumor microenvironment for immunotherapy in a murine mesothelioma model. Cancer Immunol Immunother 2025; 74:44. [PMID: 39751851 PMCID: PMC11699009 DOI: 10.1007/s00262-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025]
Abstract
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses. Radiotherapy induced vasculature changes were monitored by power Doppler and photoacoustic ultrasound and analyzed via mixed-effects models. Tissue staining was used to investigate the immune cell infiltrate of tumors. The optimal radiotherapy schedule was combined with immune checkpoint inhibitors, and the survival of mice was analyzed. Using low-dose, low-fraction radiotherapy allowed favorable modification of the murine mesothelioma tumor microenvironment. Irradiating tumors with 2 Gy × 5 fractions significantly improved blood flow and reduced hypoxia, consequently increasing the presence of CD8+ and regulatory T cells in the tumor. Understanding the transient nature of these changes is crucial for optimizing the timing of therapeutic delivery. The combination of radiotherapy with dual immunotherapy (anti-PD-1 plus anti-CTLA-4) proved highly curative when administered concurrently. A diminishing rate of cures was noted with an increasing delay between radiotherapy and subsequent immunotherapy. Concurrent low-dose, low-fraction radiotherapy emerges as a translatable approach for improving the efficacy of immune checkpoint inhibitors in patients.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
| | - Synat Keam
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alistair M Cook
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
29
|
Zhao M, Zhou Q, Ge Z. Supramolecular Assemblies via Host-Guest Interactions for Tumor Immunotherapy. Chemistry 2025; 31:e202403508. [PMID: 39448542 DOI: 10.1002/chem.202403508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapy has emerged as one of the most promising modalities for cancer treatment providing hopes of cancer patients with the significant advantages over traditional antitumor therapy methods. Supramolecular assemblies based on host-guest interactions have been widely explored in the field of cancer immunotherapy as the delivery systems. A variety of supramolecular materials show unique features for efficient drug encapsulation, targeting delivery and release, which are favorable to activate antitumor immune responses especially through combination of different treatment strategies. In this review article, we summarize the research progresses of supramolecular assemblies via host-guest interactions for tumor immunotherapy. The construction of various drug delivery systems including hydrogels, liposomes, and polymeric nanoparticles, the drug encapsulation and delivery, as well as advantages and disadvantages are discussed. The perspectives related to future developments in this field are also described.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
30
|
Jeon SY, Shin HS, Lee H, Lee JO, Kim YS. The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells. Anim Cells Syst (Seoul) 2025; 29:46-56. [PMID: 39777022 PMCID: PMC11703469 DOI: 10.1080/19768354.2024.2442393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas. The tumor cells expressing sIFNγ and mbIFNγ/Fas showed slower growth rates compared to the mock-transfected cells. Furthermore, the tumorigenicity of the CT26 cells expressing mbIFNγ/Fas was significantly lower than that of cells expressing sIFNγ or the mock control. Remarkably, about 85% of the mice injected with the mbIFNγ/Fas-expressing tumors remained tumor-free for over two months. Mice that rejected mbIFNγ/Fas-expressing tumors developed systemic anti-tumor immunity against CT26 cells, which was characterized by enhanced levels of CD4+ and CD8+ T cells, as well as natural killer (NK) cells. Interestingly, splenocytes activated with the mbIFNγ/Fas-expressing tumors exhibited higher cytotoxicity than those activated with tumor cells expressing sIFNγ. These findings suggest that expressing the mbIFNγ/Fas chimera in tumor cells could be a promising strategy for developing whole tumor cell vaccines or gene therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Seo Yeon Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hee-Su Shin
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hayyoung Lee
- Department of Life Sciences and Postech Biotech Center, POSTECH, Pohang, Korea
| | - Jie-Oh Lee
- Department of Life Sciences and Institute of Membrane Proteins, POSTECH, Pohang, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
31
|
Sanlorenzo M, Novoszel P, Vujic I, Gastaldi T, Hammer M, Fari O, De Sa Fernandes C, Landau AD, Göcen-Oguz BV, Holcmann M, Monshi B, Rappersberger K, Csiszar A, Sibilia M. Systemic IFN-I combined with topical TLR7/8 agonists promotes distant tumor suppression by c-Jun-dependent IL-12 expression in dendritic cells. NATURE CANCER 2025; 6:175-193. [PMID: 39849091 PMCID: PMC11779648 DOI: 10.1038/s43018-024-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Dendritic cell (DC) activation by pattern recognition receptors like Toll-like-receptors (TLRs) is crucial for cancer immunotherapies. Here, we demonstrate the effectiveness of the TLR7/8 agonist imiquimod (IMQ) in treating both local tumors and distant metastases. Administered orally, IMQ activates plasmacytoid DCs (pDCs) to produce systemic type I interferons (IFN-I) required for TLR7/8 upregulation in DCs and macrophages, sensitizing them to topical IMQ treatment, which is essential for therapeutic efficacy. The mechanism involves c-Jun/AP-1 mediating TLR7/8 signaling in IFN-I-primed DCs, upregulating the pDC-recruiting chemokine CCL2 and the anti-angiogenic cytokine interleukin-12, which suppresses VEGF-A production leading to tumor necrosis and regression. Combining topical and systemic IMQ or IFN-I generates a CD8+ T cell-dependent response at metastatic sites, reinforced by PD-1 blockade, leading to long-lasting memory. Analysis of cohorts of patients with melanoma demonstrates DC-specific TLR7/8 upregulation by IFN-I, supporting the translational potential of combining systemic IFN-I and topical IMQ to improve immunotherapy of topically accessible tumors.
Collapse
Affiliation(s)
- Martina Sanlorenzo
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Igor Vujic
- Department of Dermatology, Klinik Landstrasse, Vienna, Austria
| | - Tommaso Gastaldi
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Martina Hammer
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Ourania Fari
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Cristiano De Sa Fernandes
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Alina D Landau
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Bilge V Göcen-Oguz
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Babak Monshi
- Department of Dermatology, Klinik Landstrasse, Vienna, Austria
| | | | - Agnes Csiszar
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
32
|
Au KM, Swinnea JS, Wang AZ. Intratumoral Injectable Redox-Responsive Immune Niche Improves the Abscopal Effect in Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411330. [PMID: 39501983 PMCID: PMC11710980 DOI: 10.1002/adma.202411330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Indexed: 01/11/2025]
Abstract
Radiotherapy (XRT) is often utilized to improve the immune checkpoint blockade response in cancer management. Such combination treatment can enhance the abscopal effect, facilitating a prolonged and durable systemic response. However, despite intense research efforts, only a minority of patients respond to this approach, and novel strategies to increase the abscopal effect are urgently needed. Here, the development of an intratumoral (i.t.) injectable nanofiber (NF)-based tumor immune niche (TIN) that converts XRT-treated tumors into an in situ cancer vaccine, eliciting robust systemic antitumor immunity, is reported. This NF-based immune niche incorporates redox-degradable anti-CTLA-4 (α-CTLA-4) nanogels (NGs) and interleukin-2 (IL-2) NGs for controlled release in hypoxic irradiated tumors, reversing the immunosuppressive tumor microenvironment into a pro-inflammatory microenvironment, and expanding the tumor-infiltrating CD8+ T cell population. Additionally, it is functionalized with polyinosinic-polycytidylic acid (poly(I:C)) to promote antigen-presenting cell maturation and prime neoantigen-specific CD8+ T cells. In vitro studies demonstrate TIN's ability to prime antigen-specific CD8+ T cells and increase antigen-specific cell-killing efficiency under in vitro immunosuppressive conditions. In vivo studies confirm TIN's ability to elicit robust systemic anticancer activity in mouse melanoma and colorectal cancer models without inducing severe immune-related adverse events.
Collapse
Affiliation(s)
- Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - J. Steven Swinnea
- Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
| | - Andrew Z. Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| |
Collapse
|
33
|
Han J, Wang H. Immune Cell Homing Hydrogels for Cancer Immunotherapy. Methods Mol Biol 2025; 2902:107-116. [PMID: 40029598 DOI: 10.1007/978-1-0716-4402-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cancer immunotherapy has shifted the paradigm for clinical cancer treatment in the past decade, especially with the success of checkpoint blockades and chimeric antigen receptor (CAR)-T cell therapy. However, the low patient response rate to checkpoint blockades, poor efficacy of CAR-T cell therapy against solid tumors, and severe side effects in both have limited the utility of cancer immunotherapy. These issues motivate the development of new immunotherapies that can induce persistent cytotoxic T lymphocyte response with minimal side effects. This often requires the targeted modulation of specific types of immune cells (e.g., dendritic cells and T cells) in lymphatic tissues or cancerous tissues, which is inevitably challenging. Immune cell homing materials, though, enable in situ recruitment and modulation of immune cells for the orchestration of systemic immune responses and overall antitumor efficacy. Here we introduce the design, synthesis, characterization, and immune analysis of dendritic cell-homing macroporous hydrogels for the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
34
|
Grant M, Ni Lee L, Chinnakannan S, Tong O, Kwok J, Cianci N, Tillman L, Saha A, Pereira Almeida V, Leung C. Unlocking cancer vaccine potential: What are the key factors? Hum Vaccin Immunother 2024; 20:2331486. [PMID: 38564321 PMCID: PMC11657071 DOI: 10.1080/21645515.2024.2331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?
Collapse
|
35
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
36
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
37
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
38
|
Guan X, Bu F, Fu Y, Zhang H, Xiang H, Chen X, Chen T, Wu X, Wu K, Liu L, Dong X. Immunogenic peptides putatively from intratumor microbes: Opportunities for colorectal cancer treatment. iScience 2024; 27:111338. [PMID: 39640572 PMCID: PMC11617993 DOI: 10.1016/j.isci.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Recent evidence has confirmed the presence of intratumor microbes, yet their impact on the immunopeptidome remains largely unexplored. Here we introduced an integrated strategy to identify the immunopeptidome originated from intratumor microbes. Analyzing 10 colorectal cancer (CRC) patients, we identified 154 putative microbe-derived human leukocyte antigen (HLA)-I ligands. Predominantly bacterial in origin, these peptides were notably abundant in Fusobacterium nucleatum, the most prevalent bacterium differentiating between normal and tumor tissues. We discovered 20 peptides originating from F. nucleatum, thirteen of which, including two peptides shared across multiple patients, were tumor specific. Validation experiments confirmed that the putative microbe-derived peptide could activate CD8+ T cell responses. Our findings indicate that HLA-I molecules are capable of presenting intratumor microbe-derived peptides in CRC, potentially contributing to CD8+ T cell-mediated immunity and suggesting potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Research, Hangzhou 310030, China
| | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Haibo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Xinle Chen
- BGI Research, Hangzhou 310030, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Tai Chen
- BGI Research, Changzhou 213299, China
| | - Xiaojian Wu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Kui Wu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Xuan Dong
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| |
Collapse
|
39
|
Zhang H, Lu B, Lu X, Saeed A, Chen L. Current transcriptome database and biomarker discovery for immunotherapy by immune checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627506. [PMID: 39713380 PMCID: PMC11661151 DOI: 10.1101/2024.12.09.627506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized the current immuno-oncology and significantly improved clinical outcome for cancer treatment. Despite the advancement in clinics, only a small subset of patients derives immune response to the ICB therapy. Therefore, a robust predictive biomarker that identifies potential candidate becomes increasingly crucial in delivering this technology to the public. In this review, we first discuss the biomarkers that focus on tumor genome, tumor microenvironment and tumor-host interaction. Then, we compare existing databases for biomarker discovery for ICB response. We also present IOhub - an interactive web portal that incorporates 36 bulk and 10 single-cell transcriptome datasets for benchmark analysis of the current biomarkers. Finally, we highlight the trending interest in antibody drug conjugate and combination treatment and their use in precision immuno-oncology.
Collapse
|
40
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
41
|
Peralta RM, Xie B, Lontos K, Nieves-Rosado H, Spahr K, Joshi S, Ford BR, Quann K, Frisch AT, Dean V, Philbin M, Cillo AR, Gingras S, Poholek AC, Kane LP, Rivadeneira DB, Delgoffe GM. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism. Nat Immunol 2024; 25:2297-2307. [PMID: 39516648 PMCID: PMC11588660 DOI: 10.1038/s41590-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cells are critical mediators of antitumor immunity but differentiate into a dysfunctional state, known as T cell exhaustion, after persistent T cell receptor stimulation in the tumor microenvironment (TME). Exhausted T (Tex) cells are characterized by upregulation of coinhibitory molecules and reduced polyfunctionality. T cells in the TME experience an immunosuppressive metabolic environment via reduced levels of nutrients and oxygen and a buildup of lactic acid. Here we show that terminally Tex cells uniquely upregulate Slc16a11, which encodes monocarboxylate transporter 11 (MCT11). Conditional deletion of MCT11 in T cells reduced lactic acid uptake by Tex cells and improved their effector function. Targeting MCT11 with an antibody reduced lactate uptake specifically in Tex cells, which, when used therapeutically in tumor-bearing mice, resulted in reduced tumor growth. These data support a model in which Tex cells upregulate MCT11, rendering them sensitive to lactic acid present at high levels in the TME.
Collapse
Affiliation(s)
- Ronal M Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hector Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Quann
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mary Philbin
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sebastian Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Rajendran R, Beck RC, Waskasi MM, Kelly BD, Bauer DR. Digital analysis of the prostate tumor microenvironment with high-order chromogenic multiplexing. J Pathol Inform 2024; 15:100352. [PMID: 38186745 PMCID: PMC10770522 DOI: 10.1016/j.jpi.2023.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/30/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
As our understanding of the tumor microenvironment grows, the pathology field is increasingly utilizing multianalyte diagnostic assays to understand important characteristics of tumor growth. In clinical settings, brightfield chromogenic assays represent the gold-standard and have developed significant trust as the first-line diagnostic method. However, conventional brightfield tests have been limited to low-order assays that are visually interrogated. We have developed a hybrid method of brightfield chromogenic multiplexing that overcomes these limitations and enables high-order multiplex assays. However, how compatible high-order brightfield multiplexed images are with advanced analytical algorithms has not been extensively evaluated. In the present study, we address this gap by developing a novel 6-marker prostate cancer assay that targets diverse aspects of the tumor microenvironment such as prostate-specific biomarkers (PSMA and p504s), immune biomarkers (CD8 and PD-L1), a prognostic biomarker (Ki-67), as well as an adjunctive diagnostic biomarker (basal cell cocktail) and apply the assay to 143 differentially graded adenocarcinoma prostate tissues. The tissues were then imaged on our spectroscopic multiplexing imaging platform and mined for proteomic and spatial features that were correlated with cancer presence and disease grade. Extracted features were used to train a UMAP model that differentiated healthy from cancerous tissue with an accuracy of 89% and identified clusters of cells based on cancer grade. For spatial analysis, cell-to-cell distances were calculated for all biomarkers and differences between healthy and adenocarcinoma tissues were studied. We report that p504s positive cells were at least 2× closer to cells expressing PD-L1, CD8, Ki-67, and basal cell in adenocarcinoma tissues relative to the healthy control tissues. These findings offer a powerful insight to understand the fingerprint of the prostate tumor microenvironment and indicate that high-order chromogenic multiplexing is compatible with digital analysis. Thus, the presented chromogenic multiplexing system combines the clinical applicability of brightfield assays with the emerging diagnostic power of high-order multiplexing in a digital pathology friendly format that is well-suited for translational studies to better understand mechanisms of tumor development and growth.
Collapse
Affiliation(s)
- Rahul Rajendran
- Roche Diagnostics Solutions, (Ventana Medical Systems, Inc.), Tucson, AZ, USA
| | - Rachel C. Beck
- Roche Diagnostics Solutions, (Ventana Medical Systems, Inc.), Tucson, AZ, USA
| | - Morteza M. Waskasi
- Roche Diagnostics Solutions, (Ventana Medical Systems, Inc.), Tucson, AZ, USA
| | - Brian D. Kelly
- Roche Diagnostics Solutions, (Ventana Medical Systems, Inc.), Tucson, AZ, USA
| | - Daniel R. Bauer
- Roche Diagnostics Solutions, (Ventana Medical Systems, Inc.), Tucson, AZ, USA
| |
Collapse
|
43
|
Li R, Qian J, Zhu X, Tao T, Zhou X. Nanomolecular machines: Pioneering precision medicine for neoplastic diseases through advanced diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167486. [PMID: 39218275 DOI: 10.1016/j.bbadis.2024.167486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tumors pose a major threat to human health, accounting for nearly one-sixth of global deaths annually. The primary treatments include surgery, radiotherapy, chemotherapy, and immunotherapy, each associated with significant side effects. This has driven the search for new therapies with fewer side effects and greater specificity. Nanotechnology has emerged as a promising field in this regard, particularly nanomolecular machines at the nanoscale. Nanomolecular machines are typically constructed from biological macromolecules like proteins, DNA, and RNA. These machines can be programmed to perform specialized tasks with precise instructions. Recent research highlights their potential in tumor diagnostics-identifying susceptibility genes, detecting viruses, and pinpointing tumor markers. Nanomolecular machines also offer advancements in tumor therapy. They can reduce traditional treatment side effects by delivering chemotherapy drugs and enhancing immunotherapy, and they support innovative treatments like sonodynamic and phototherapy. Additionally, they can starve tumors by blocking blood vessels, and eliminate tumors by disrupting cell membranes or lysosomes. This review categorizes and explains the latest achievements in molecular machine research, explores their models, and practical clinical uses in tumor diagnosis and treatment. It aims to broaden the research perspective and accelerate the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Ruming Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Second Affiliated Hospital, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jialu Qian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
44
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
45
|
Panapitakkul C, Bulaon CJI, Pisuttinusart N, Phoolcharoen W. Characterization of host cell proteins in the downstream process of plant-Based biologics using LC-MS profiling. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00856. [PMID: 39376902 PMCID: PMC11456875 DOI: 10.1016/j.btre.2024.e00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities found in biopharmaceutical products that can impair their safety and efficacy. While ELISA has traditionally been employed to quantify HCPs, LC-MS emerges as a powerful alternative for precise identification of individual HCPs. In this study, we used LC-MS for profiling HCPs from Nicotiana benthamiana-derived biopharmaceuticals. Our approach involved rigorous false discovery rate control to ensure data integrity and reliability. Comprehensive analysis revealed a systematic reduction of HCPs following purification, demonstrating the efficiency of purification processes in removing non-essential proteins. Furthermore, LC-MS enabled the identification of potential contaminants, refining purification strategies and improving product purity and integrity. Our findings highlight the potential of LC-MS as an analytical tool for HCPs analysis in biopharmaceutical development and manufacturing. By providing detailed insights into HCPs profiles and contaminants, LC-MS facilitates informed decision-making in downstream processing steps, benefiting product quality, patient safety, and the biopharmaceutical sector.
Collapse
Affiliation(s)
| | | | - Nuttapat Pisuttinusart
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
46
|
De Groof TWM, Lauwers Y, De Pauw T, Saxena M, Vincke C, Van Craenenbroeck J, Chapon C, Le Grand R, Raes G, Naninck T, Van Ginderachter JA, Devoogdt N. Specific imaging of CD8 + T-Cell dynamics with a nanobody radiotracer against human CD8β. Eur J Nucl Med Mol Imaging 2024; 52:193-207. [PMID: 39218831 PMCID: PMC11599301 DOI: 10.1007/s00259-024-06896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE While immunotherapy has revolutionized the oncology field, variations in therapy responsiveness limit the broad applicability of these therapies. Diagnostic imaging of immune cell, and specifically CD8+ T cell, dynamics could allow early patient stratification and result in improved therapy efficacy and safety. In this study, we report the development of a nanobody-based immunotracer for non-invasive SPECT and PET imaging of human CD8+ T-cell dynamics. METHODS Nanobodies targeting human CD8β were generated by llama immunizations and subsequent biopanning. The lead anti-human CD8β nanobody was characterized on binding, specificity, stability and toxicity. The lead nanobody was labeled with technetium-99m, gallium-68 and copper-64 for non-invasive imaging of human T-cell lymphomas and CD8+ T cells in human CD8 transgenic mice and non-human primates by SPECT/CT or PET/CT. Repeated imaging of CD8+ T cells in MC38 tumor-bearing mice allowed visualization of CD8+ T-cell dynamics. RESULTS The nanobody-based immunotracer showed high affinity and specific binding to human CD8 without unwanted immune activation. CD8+ T cells were non-invasively visualized by SPECT and PET imaging in naïve and tumor-bearing mice and in naïve non-human primates with high sensitivity. The nanobody-based immunotracer showed enhanced specificity for CD8+ T cells and/or faster in vivo pharmacokinetics compared to previous human CD8-targeting immunotracers, allowing us to follow human CD8+ T-cell dynamics already at early timepoints. CONCLUSION This study describes the development of a more specific human CD8+ T-cell-targeting immunotracer, allowing follow-up of immunotherapy responses by non-invasive imaging of human CD8+ T-cell dynamics.
Collapse
Affiliation(s)
- Timo W M De Groof
- Molecular Imaging and Therapy Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yoline Lauwers
- Molecular Imaging and Therapy Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tessa De Pauw
- Molecular Imaging and Therapy Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohit Saxena
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses & Le Kremlin-Bicêtre, Inserm, Paris, CEA, France
| | - Cécile Vincke
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jolien Van Craenenbroeck
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses & Le Kremlin-Bicêtre, Inserm, Paris, CEA, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses & Le Kremlin-Bicêtre, Inserm, Paris, CEA, France
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses & Le Kremlin-Bicêtre, Inserm, Paris, CEA, France
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Zhang W, Park HB, Yadav D, An EK, Kim SJ, Ryu D, Agrawal R, Ryu JH, Kwak M, Lee PCW, Jin JO. P-type pilus PapG protein elicits toll-like receptor 2-mediated immune activation during cancer immunotherapy. Int J Biol Macromol 2024; 282:137061. [PMID: 39481736 DOI: 10.1016/j.ijbiomac.2024.137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The immune activation ability of FimH, an adhesion protein in pili of Escherichia coli (E. coli), has been recently reported. However, studies on the immune activity of PapG, another major pili terminal protein, have not been well explored. In this study, the immune stimulatory effect of purified recombinant PapG was evaluated. PapG treatment promoted dramatic changes in dendritic morphology of the bone marrow-derived dendritic cells (BMDCs) and induced upregulation of co-stimulatory molecule levels, major histocompatibility complex (MHC) I and II expression, and pro-inflammatory cytokine production in BMDCs. To identify the stimulatory receptor of PapG, an in silico study was performed. PapG exhibited strong binding affinity with murine toll-like receptor 2 (TLR2). In addition, PapG-induced activation of splenic DC and its subsets was unsuccessful in TLR2-knock out mice. Combination of PapG and ovalbumin (OVA) elicited OVA-specific T cell proliferation and cytokine production and cytotoxicity that consequently promoted anti-cancer immune responses against OVA-expressing B16 melanoma. Furthermore, PapG treatment induced activation of peripheral blood DCs and its subsets in humans in a TLR2 dependent manner. PapG-stimulated human conventional DC2 promoted syngeneic T cell proliferation and activation. The findings of this study demonstrated that PapG could be a useful immune stimulator for immunotherapy against cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea; USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, Florida 33613, USA
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Richa Agrawal
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, The University of Chicago, 929 E 57(th) street, Chicago, IL 60637, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
48
|
Murphy S. Principles of Tumor Biology. Vet Clin North Am Equine Pract 2024; 40:341-350. [PMID: 39183072 DOI: 10.1016/j.cveq.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Cancer is disease of the genome. The Hallmarks of cancer are a way of thinking of cancer to help rationalize what occurs in this disease process. A solid tumor is a complex of normal and neoplastic cells, arising through an evolutionary process to survive and grow. By understanding how normal cellular mechanisms are subverted to promote cancer we can refine our approach to improve outcomes. It gives us opportunities to prevent some cancers and allowing earlier diagnosis. We can refine conventional diagnostic tools and give more accurate prognoses. It offers novel targets to improve treatment of cancers, allowing personalized medicine.
Collapse
Affiliation(s)
- Suzanne Murphy
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| |
Collapse
|
49
|
Yang P, Jiao X. A Glycolysis and gluconeogenesis-related model for breast cancer prognosis. Cancer Biomark 2024; 41:18758592241296278. [PMID: 40095490 DOI: 10.1177/18758592241296278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundBreast cancer is a malignant tumor with high morbidity and mortality, which seriously endangers the health of women around the world. Biomarker-based exploration will be effective for better diagnosis, prediction and targeted therapy.ObjectiveTo construct biomarker models related to glycolysis and gluconeogenesis in breast cancer.MethodsThe gene expression of 932 breast cancer patients in the Cancer Genome Atlas (TCGA) database was analyzed by Gene Set Variation Analysis (GSVA) using glycolysis and gluconeogenesis-related pathways. Differential expression genes were searched for by the T-test. Univariate Cox proportional hazards model (COX) regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Multivariate COX regression were used to find clinically significant genes for prognostic survival. After that, the constructed gene signature was externally validated through the Gene Expression Omnibus (GEO). Finally, a nomogram was constructed to predict the survival of patients. In addition, analyzing the role of biomarkers in pan-cancer.ResultsA risk scoring model associated with glycolysis and gluconeogenesis was developed and validated. A nomogram was created to predict 2-, 3-, and 5- survival.ConclusionsThe predictive model accurately predicted the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Penglu Yang
- College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, China
| | - Xiong Jiao
- College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, China
| |
Collapse
|
50
|
Medeiros GC, Demo I, Goes FS, Zarate CA, Gould TD. Personalized use of ketamine and esketamine for treatment-resistant depression. Transl Psychiatry 2024; 14:481. [PMID: 39613748 PMCID: PMC11607365 DOI: 10.1038/s41398-024-03180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
A large and disproportionate portion of the burden associated with major depressive disorder (MDD) is due to treatment-resistant depression (TRD). Intravenous (R,S)-ketamine (ketamine) and intranasal (S)-ketamine (esketamine) are rapid-acting antidepressants that can effectively treat TRD. However, there is variability in response to ketamine/esketamine, and a personalized approach to their use will increase success rates in the treatment of TRD. There is a growing literature on the precision use of ketamine in TRD, and the body of evidence on esketamine is still relatively small. The identification of reliable predictors of response to ketamine/esketamine that are easily translatable to clinical practice is urgently needed. Potential clinical predictors of a robust response to ketamine include a pre-treatment positive family history of alcohol use disorder and a pre-treatment positive history of clinically significant childhood trauma. Pre-treatment versus post-treatment increases in gamma power in frontoparietal brain regions, observed in electroencephalogram (EEG) studies, is a promising brain-based biomarker of response to ketamine, given its time of onset and general applicability. Blood-based biomarkers have shown limited usefulness, with small-effect increases in brain-derived neurotrophic factor (BDNF) being the most consistent indicator of ketamine response. The severity of treatment-emergent dissociative symptoms is typically not associated with a response either to ketamine or esketamine. Future studies should ensure that biomarkers and clinical variables are obtained in a similar manner across studies to allow appropriate comparison across trials and to reduce the signal-to-noise ratio. Most predictors of response to ketamine/esketamine have modest effect sizes; therefore, the use of multivariate predictive models will be needed.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Advanced Depression Treatment (ADepT) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Advanced Depression Treatment (ADepT) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|