1
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
González L, Díaz ME, Miquet JG, Sotelo AI, Dominici FP. Growth Hormone Modulation of Hepatic Epidermal Growth Factor Receptor Signaling. Trends Endocrinol Metab 2021; 32:403-414. [PMID: 33838976 DOI: 10.1016/j.tem.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
Epidermal growth factor receptor (EGFR) signaling has a central role in the regenerative response of the liver upon injury and is involved in cellular transformation linked to chronic damage. Hepatic EGFR expression, trafficking, and signaling are regulated by growth hormone (GH). Chronically elevated GH levels are associated with liver cancer development and progression in mice. Studies in different in vivo experimental models indicate that EGF and GH mutually crossregulate in a complex manner. Several factors, such as the extent of exposure to supraphysiological GH levels and the pattern of GH administration, are important variables to be considered in exploring the interplay between the two hormones in connection with the progression of hepatic tumors.
Collapse
Affiliation(s)
- Lorena González
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María E Díaz
- Universidad Nacional de Luján, CONICET, Instituto de Ecología y Desarrollo Sustentable (INEDES), Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ana I Sotelo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
3
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Komposch K, Sibilia M. EGFR Signaling in Liver Diseases. Int J Mol Sci 2015; 17:E30. [PMID: 26729094 PMCID: PMC4730276 DOI: 10.3390/ijms17010030] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC) highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs).
Collapse
Affiliation(s)
- Karin Komposch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
5
|
Lu XJ, Chen Q, Yang GJ, Chen J. The TNFα converting enzyme (TACE) from ayu (Plecoglossus altivelis) exhibits TNFα shedding activity. Mol Immunol 2015; 63:497-504. [DOI: 10.1016/j.molimm.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/27/2023]
|
6
|
Chuanwu Z, Feng Q, Ming L, Haiyan W, Huan F, Xiangrong L, Xuehua Z, Xiang Z, Xiujuan S, Ping X. Detection of telomerase reverse transcriptase mRNA in peripheral blood mononuclear cells of patients with liver failure. HEPATITIS MONTHLY 2014; 14:e17976. [PMID: 24829587 PMCID: PMC4013496 DOI: 10.5812/hepatmon.17976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 02/21/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Telomerase activity is closely associated with the expression of human telomerase reverse transcriptase (hTERT) mRNA; although it can be induced in hepatocytes during liver regeneration, its dynamic change in patients with liver failure has remained unclear. OBJECTIVES We investigated the variation and significance of hTERT mRNA expression in peripheral blood mononuclear cells (PBMCs) of the patients with liver failure. PATIENTS AND METHODS In this clinical experimental study, 76 Chinese patients were enrolled in the study between 2010 and 2012. The level of PBMCs hTERT mRNA was detected by relative quantitative real-time polymerase chain reaction (RT-PCR) in the samples taken before treatment and at seven-day intervals during a 28-day treatment period. The patients were divided into survivor and non-survivor groups according to the 3-months mortality after treatment. The dynamic variation of PBMCs hTERT mRNA was analyzed and its association with prognosis was assessed by the area under the receiver-operating characteristic curve. RESULTS The median level of PBMCs hTERT mRNA in survivors increased with treatment time and was significantly higher than the corresponding level in non-survivors after 14 days of treatment (P < 0.001). Subgroup analyses showed that the levels of PBMCs hTERT mRNA were remarkably higher in patients with acute-on-chronic liver failure than in those with chronic liver failure (P < 0.05). In patients with the same clinical type of liver failure, the level was markedly higher in survivors than in non-survivors after 14 days of treatment (P < 0.05); however, the levels were not significantly different between subgroups with different clinical type but the same prognosis. The sensitivity and specificity of PBMCs hTERT mRNA was high in evaluating the prognosis at day 14 and became much higher at days 21 and 28 post treatment. The expression of PBMCs hTERT mRNA had high sensitivity and specificity in evaluating the prognosis as early as day 14 post treatment and was significantly superior to the prognostic value of serum alpha-fetoprotein. CONCLUSIONS The expression of PBMCs hTERT mRNA is closely associated with patient outcome, which indicates that hTERT mRNA in PBMCs might be useful as a prognostic biomarker of liver failure.
Collapse
Affiliation(s)
- Zhu Chuanwu
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
- Corresponding Author: Zhu Chuanwu, Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China. Tel: +86-51265180193, Fax: +86-51265291020, E-mail:
| | - Qian Feng
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Li Ming
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Wang Haiyan
- Department of Infectious Diseases, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fang Huan
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Luo Xiangrong
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Zhang Xuehua
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Zhu Xiang
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Shen Xiujuan
- Department of Hepatology, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Xu Ping
- Key Laboratory of Infection and Immunity, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol 2014; 49:9-23. [PMID: 24318021 DOI: 10.1007/s00535-013-0907-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 02/04/2023]
Abstract
The liver displays an outstanding wound healing and regenerative capacity unmatched by any other organ. This reparative response is governed by a complex network of inflammatory mediators, growth factors and metabolites that are set in motion in response to hepatocellular injury. However, when liver injury is chronic, these regenerative mechanisms become dysregulated, facilitating the accumulation of genetic alterations leading to unrestrained cell proliferation and the development of hepatocellular carcinoma (HCC). The epidermal growth factor receptor (EGFR or ErbB1) signaling system has been identified as a key player in all stages of the liver response to injury, from early inflammation and hepatocellular proliferation to fibrogenesis and neoplastic transformation. The EGFR system engages in extensive crosstalk with other signaling pathways, acting as a true signaling hub for other growth factors, cytokines and inflammatory mediators. Here, we briefly review essential aspects of the biology of the EGFR, the other ErbB receptors, and their ligands in liver injury, regeneration and HCC development. Some aspects of the preclinical and clinical experience with EGFR therapeutic targeting in HCC are also discussed.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy and CIBEREhd, CIMA-University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain,
| | | |
Collapse
|
8
|
McMahan RS, Riehle KJ, Fausto N, Campbell JS. A disintegrin and metalloproteinase 17 regulates TNF and TNFR1 levels in inflammation and liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G25-34. [PMID: 23639813 PMCID: PMC3725689 DOI: 10.1152/ajpgi.00326.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17), or tumor necrosis factor (TNF)-α-converting enzyme, is a key metalloproteinase and physiological convertase for a number of putative targets that play critical roles in cytokine and growth factor signaling. These interdependent pathways are essential components of the signaling network that links liver function with the compensatory growth that occurs during liver regeneration following 2/3 partial hepatectomy (PH) or chemically induced hepatotoxicity. Despite identification of many soluble factors needed for efficient liver regeneration, very little is known about how such ligands are regulated in the liver. To directly study the role of ADAM17 in the liver, we employed two cell-specific ADAM17 knockout (KO) mouse models. Using lipopolysaccharide (LPS) as a robust stimulus for TNF release, we found attenuated levels of circulating TNF in myeloid-specific ADAM17 KO mice (ADAM17 m-KO) and, unexpectedly, in mice with hepatocyte-specific ADAM17 deletion (ADAM17 h-KO), indicating that ADAM17 expression in both cell types plays a role in TNF shedding. After 2/3 PH, induction of TNF, TNFR1, and amphiregulin (AR) was significantly attenuated in ADAM17 h-KO mice, implicating ADAM17 as the primary sheddase for these factors in the liver. Surprisingly, the extent and timing of hepatocyte proliferation were not affected after PH or carbon tetrachloride injection in ADAM17 h-KO or ADAM17 m-KO mice. We conclude that ADAM17 regulates TNF, TNFR1, and AR in the liver, and its expression in both hepatocytes and myeloid cells is important for TNF regulation after LPS injury or 2/3 PH, but is not required for liver regeneration.
Collapse
Affiliation(s)
- Ryan S. McMahan
- 1Department of Pathology, University of Washington, Seattle, Washington; and
| | - Kimberly J. Riehle
- 1Department of Pathology, University of Washington, Seattle, Washington; and ,2Department of Surgery, University of Washington, Seattle, Washington
| | - Nelson Fausto
- 1Department of Pathology, University of Washington, Seattle, Washington; and
| | - Jean S. Campbell
- 1Department of Pathology, University of Washington, Seattle, Washington; and
| |
Collapse
|
9
|
Chen X, Xu C. High-throughput analysis of tumor necrosis factor signaling pathways in eight cell types during rat hepatic regeneration. Inflammation 2012; 35:1538-48. [PMID: 22628123 DOI: 10.1007/s10753-012-9469-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study aims to clarify the relevance of tumor necrosis factor (TNFs) signaling pathways and liver regeneration (LR) at the cellular level. Eight liver cell types were isolated using Percoll density gradient centrifugation and immunomagnetic beads methods. Expressions of TNF signaling pathway-involved genes in each cell type after 2/3 hepatectomy (PH) were detected using gene chip. Results show the following: gene TNFα was upregulated in most cell types, especially in Kupffer cells (KC); TNFβ expression was insignificantly changed in eight liver cell types; the majority of genes involved in four TNFα signaling pathways showed increased expression during LR in hepatocytes (HC); TNFα-induced NFκB pathway-involved genes were upregulated preferentially between 2 and 24 h during LR in biliary epithelial cells (BECs); and TNFα-induced apoptotic pathway genes were downregulated preferentially at progressing phase of LR in dendritic cells (DCs). Referring to the above results, TNFα-mediated signaling pathways, in contrast to TNFβ, play the more proactive role in LR, and four TNFα-mediated signaling pathways seem helpful to regulate biological events in HC; BEC proliferation was partly controlled by TNFα-mediated NFκB pathway; and the impaired TNFα-mediated apoptotic pathway in DCs might contribute to the restoration of DC mass after PH. Briefly, the comparative analysis of genomewide expression profiles of TNF signaling pathways between different cell types is helpful in understanding the implication of TNF signaling in LR at the cellular level.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, 471003, Henan Province, China.
| | | |
Collapse
|
10
|
EGFR: A Master Piece in G1/S Phase Transition of Liver Regeneration. Int J Hepatol 2012; 2012:476910. [PMID: 23050157 PMCID: PMC3461622 DOI: 10.1155/2012/476910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Unraveling the molecular clues of liver proliferation has become conceivable thanks to the model of two-third hepatectomy. The synchronicity and the well-scheduled aspect of this process allow scientists to slowly decipher this mystery. During this phenomenon, quiescent hepatocytes of the remnant lobes are able to reenter into the cell cycle initiating the G1-S progression synchronously before completing the cell cycle. The major role played by this step of the cell cycle has been emphasized by loss-of-function studies showing a delay or a lack of coordination in the hepatocytes G1-S progression. Two growth factor receptors, c-Met and EGFR, tightly drive this transition. Due to the level of complexity surrounding EGFR signaling, involving numerous ligands, highly controlled regulations and multiple downstream pathways, we chose to focus on the EGFR pathway for this paper. We will first describe the EGFR pathway in its integrity and then address its essential role in the G1/S phase transition for hepatocyte proliferation. Recently, other levels of control have been discovered to monitor this pathway, which will lead us to discuss regulations of the EGFR pathway and highlight the potential effect of misregulations in pathologies.
Collapse
|
11
|
Nechemia-Arbely Y, Shriki A, Denz U, Drucker C, Scheller J, Raub J, Pappo O, Rose-John S, Galun E, Axelrod JH. Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. J Hepatol 2011; 54:922-9. [PMID: 21145830 DOI: 10.1016/j.jhep.2010.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 07/05/2010] [Accepted: 08/03/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Interleukin-6 (IL-6) is a crucial factor in liver regeneration following partial hepatectomy (PH); however, the role of IL-6 and IL-6 trans-signaling in particular, in hepatocyte mitosis remains controversial. IL-6 trans-signaling relies upon the release of the soluble IL-6R (sIL-6R), which binds IL-6 to form an agonistic IL-6/sIL-6R complex. Herein we have examined the hypothesis that IL-6 trans-signaling plays a crucial and distinct role in liver regeneration following PH. METHODS The specific IL-6/sIL-6R antagonist, sgp130Fc, was expressed in mice and analyzed for its effect on hepatocyte mitosis following PH. Alternatively, we examined the effect of the IL-6/sIL-6R super-agonist, Hyper-IL-6, or IL-6 expressed either alone or in combination with hepatocyte growth factor (HGF) on hepatocyte mitosis in the absence of PH. RESULTS Following PH, the dramatic rise of circulating IL-6 levels is accompanied by a concurrent ∼2-fold increase in circulating sIL-6R levels. Ectopic expression of sgp130Fc reduced hepatocyte mitosis by about 40% at early times following PH, while substantially reducing AKT, but not STAT3, activation. But, ectopic Hyper-IL-6 expression in mice without PH was not mitogenic to hepatocytes in vivo. Rather, Hyper-IL-6, but not IL-6, markedly increased HGF-induced hepatocyte mitosis. This cooperative effect correlated with greater resistance of HIL-6 than IL-6 to HGF-mediated reduction of AKT activation, rather than changes in STAT3 or MAPK signaling, and was completely blocked by PI3K inhibition. CONCLUSIONS Following PH, IL-6/sIL-6R cooperates with growth factors, through a PI3K/AKT-dependent mechanism to promote entry of hepatocytes into the cell cycle.
Collapse
Affiliation(s)
- Yael Nechemia-Arbely
- The Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goñi S, Santamaría M, Prieto J, Avila MA. The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med (Maywood) 2009; 234:713-25. [PMID: 19429859 DOI: 10.3181/0901-mr-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have established that many tumours occur in association with persistent inflammation. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC slowly unfolds on a background of chronic inflammation triggered by exposure to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or metabolic impairment. The molecular links that connect inflammation and cancer are not completely known, but evidence gathered over the past few years is beginning to define the precise mechanisms. A central role for cytokines such as interleukin-6 (IL-6) and IL-1 (alpha and beta) in liver cancer has been established in experimental models. Besides these inflammatory mediators, mounting evidence points to the dysregulation of specific growth and survival-related pathways in HCC development. Among them is the pathway governed by the epidermal growth factor receptor (EGFR), which can be bound and activated by a broad family of ligands. Of special relevance is the fact that the EGFR engages in extensive crosstalk with other signaling pathways, serving as a "signaling hub" for an increasing list of growth factors, cytokines, and inflammatory mediators. In this review, we summarize the most recent evidences supporting a role for the EGFR system in inflammation-related cell signaling, with special emphasis in liver inflammation and HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will facilitate the development of novel and more effective antitumor strategies.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|