1
|
MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022; 27:molecules27154811. [PMID: 35956764 PMCID: PMC9369872 DOI: 10.3390/molecules27154811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related deaths are very commonly attributed to complications from metastases to neighboring as well as distant organs. Dissociate response in the treatment of pancreatic adenocarcinoma is one of the main causes of low treatment success and low survival rates. This behavior could not be explained by transcriptomics or genomics; however, differences in the composition at the protein level could be observed. We have characterized the proteomic composition of primary pancreatic adenocarcinoma and distant metastasis directly in human tissue samples, utilizing mass spectrometry imaging. The mass spectrometry data was used to train and validate machine learning models that could distinguish both tissue entities with an accuracy above 90%. Model validation on samples from another collection yielded a correct classification of both entities. Tentative identification of the discriminative molecular features showed that collagen fragments (COL1A1, COL1A2, and COL3A1) play a fundamental role in tumor development. From the analysis of the receiver operating characteristic, we could further advance some potential targets, such as histone and histone variations, that could provide a better understanding of tumor development, and consequently, more effective treatments.
Collapse
|
2
|
Lu M, Faull KF, Whitelegge JP, He J, Shen D, Saxton RE, Chang HR. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery. Biomark Insights 2017. [DOI: 10.1177/117727190700200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.
Collapse
Affiliation(s)
- Ming Lu
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Kym F. Faull
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jianbo He
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Dejun Shen
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Romaine E. Saxton
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Helena R. Chang
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
3
|
Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016; 11:2443-56. [PMID: 27529192 DOI: 10.2217/nnm-2016-0194] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could take advantage of differentially expressed molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. Several efforts have recently reported the use of diverse molecules as ligands on the surface of nanoparticles to interact with the tumor cells, enabling the effective delivery of antitumor agents. Here, we present recent advances in targeted nanoparticles against CRC and discuss the promising use of ligands and cellular targets in potential strategies for the treatment of CRCs.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile
| | - Nazila Kamaly
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Micro & Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Won Il Choi
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Ali Tavakkoli
- Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
4
|
Identification of host-immune response protein candidates in the sera of human oral squamous cell carcinoma patients. PLoS One 2014; 9:e109012. [PMID: 25272005 PMCID: PMC4182798 DOI: 10.1371/journal.pone.0109012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/06/2014] [Indexed: 12/13/2022] Open
Abstract
One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC), which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25) and healthy controls (n = 25) were subjected to two-dimensional gel electrophoresis (2-DE) and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG), alpha-1-B-glycoprotein (ABG), clusterin (CLU), PRO2044, haptoglobin (HAP), complement C3c (C3), proapolipoprotein A1 (proapo-A1), and retinol-binding protein 4 precursor (RBP4). Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC.
Collapse
|
5
|
Petushkova NA, Pyatnitskiy MA, Rudenko VA, Larina OV, Trifonova OP, Kisrieva JS, Samenkova NF, Kuznetsova GP, Karuzina II, Lisitsa AV. Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver. PLoS One 2014; 9:e103950. [PMID: 25083712 PMCID: PMC4118999 DOI: 10.1371/journal.pone.0103950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/04/2014] [Indexed: 01/29/2023] Open
Abstract
Background There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available the task can be to mine for presence of meaningful groups (clusters) of samples and to explore underlying data structure (unsupervised learning). Results We investigated the proteomic profiles of the cytosolic fraction of human liver samples using two-dimensional electrophoresis (2DE). Samples were resected upon surgical treatment of hepatic metastases in colorectal cancer. Unsupervised hierarchical clustering of 2DE gel images (n = 18) revealed a pair of clusters, containing 11 and 7 samples. Previously we used the same specimens to measure biochemical profiles based on cytochrome P450-dependent enzymatic activities and also found that samples were clearly divided into two well-separated groups by cluster analysis. It turned out that groups by enzyme activity almost perfectly match to the groups identified from proteomic data. Of the 271 reproducible spots on our 2DE gels, we selected 15 to distinguish the human liver cytosolic clusters. Using MALDI-TOF peptide mass fingerprinting, we identified 12 proteins for the selected spots, including known cancer-associated species. Conclusions/Significance Our results highlight the importance of hierarchical cluster analysis of proteomic data, and showed concordance between results of biochemical and proteomic approaches. Grouping of the human liver samples and/or patients into differing clusters may provide insights into possible molecular mechanism of drug metabolism and creates a rationale for personalized treatment.
Collapse
Affiliation(s)
- Natalia A. Petushkova
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
- * E-mail:
| | - Mikhail A. Pyatnitskiy
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | | | - Olesya V. Larina
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oxana P. Trifonova
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Julya S. Kisrieva
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalia F. Samenkova
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Galina P. Kuznetsova
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Irina I. Karuzina
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrey V. Lisitsa
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
- Postgen Tech LLC, Moscow, Russia
| |
Collapse
|
6
|
Harn HJ, Chen YL, Lin PC, Cheng YL, Lee SC, Chiou TW, Yang HH. Exploration of Potential Tumor Markers for Lung Adenocarcinomas by Two-Dimensional Gel Electrophoresis Coupled with Nano-LC/MS/MS. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Derijks-Engwegen JY, Cats A, Smits ME, Schellens JH, Beijnen JH. Improving colorectal cancer management: the potential of proteomics. Biomark Med 2012; 2:253-89. [PMID: 20477414 DOI: 10.2217/17520363.2.3.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Successful treatment is heavily dependent on tumor stage at the time of detection, but unfortunately CRC is often only detected in advanced stages. New biomarkers in the form of genes or proteins that can be used for diagnosis, prognostication, follow-up, and treatment selection and monitoring could be of great benefit for the management of CRC. Furthermore, proteins could prove valuable new targets for therapy. Therefore, clinical proteomics has gained a lot of scientific interest in this regard. To get an overall insight into the extent to which this research has contributed to a better management of CRC, we give a comprehensive overview of the results of proteomics research on CRC, focusing on expression proteomics, in other words, protein profiling studies. Furthermore, we evaluate the potential of the discriminating proteins identified in this research for clinical use as biomarkers for (early) diagnosis, prognosis and follow-up of CRC or as targets for new therapeutic regimens.
Collapse
|
8
|
Wang C, Guo K, Gao D, Kang X, Jiang K, Li Y, Sun L, Zhang S, Sun C, Liu X, Wu W, Yang P, Liu Y. Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett 2011; 313:154-166. [PMID: 22023829 DOI: 10.1016/j.canlet.2011.08.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of serious disorders with the highest morbidities and mortalities worldwide. Metastasis is the major concern that causes death in HCC. The goal of this study was to screen and identify potential serum proteins indicating HCC metastasis. Serum samples collected from control and HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. A total of 554 proteins were identified and 80 proteins were differential expressed at least between one adjacent time points. Among them, expression level of transaldolase (TALDO) was validated in mouse and human serum. The level of TALDO protein was found to be higher in metastatic mice serum compared to that of non-metastatic mice. Human specific TALDO was then identified in mouse serum through human specific peptides. Immunohistochemical and western blot analysis showed that the expression of TALDO in human HCC tissues and HCC cell lines was associated with its metastatic behavior. Subsequent screening of TALDO expression in 72 clinical serum samples (comprising 36 non-metastatic HCC and 36 metastatic HCC samples) revealed higher TALDO level in the serum of metastatic HCC patients. A receiver operating characteristic (ROC) curve estimated a maximal sensitivity of 77.8% and 86.1% specificity for TALDO in detection of HCC metastasis. The present results demonstrated that the nude mouse xenograft model is an efficient system for performing metastasis-related biomarker discovery. TALDO may be useful biomarkers for the detection of HCC metastasis.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shi H, Hood KA, Hayes MT, Stubbs RS. Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis. J Proteomics 2011; 75:339-51. [PMID: 21843667 DOI: 10.1016/j.jprot.2011.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/26/2023]
Abstract
The emergence of laser capture microdissection (LCM) and two-dimensional difference gel electrophoresis (2D-DIGE) has been shown to greatly improve the accuracy and sensitivity of global protein expression analysis. However, their combined use in profiling tumour proteome has rarely been reported. In this study, we applied these techniques to profile the protein expression changes of the late stage colorectal cancer (CRC) and its liver metastases. The study revealed that both the primary and secondary tumours showed a distinct protein expression profile compared to normal tissues, but were indistinguishable from each other. Differential analysis between the primary tumour and patient-matched normal colon mucosa identified a total of 71 proteins to be altered in CRC. Over 40% of these proteins have been previously reported as CRC-related proteins, validating the accuracy of the current analysis. We have also identified many previously unknown changes including overexpression of ACY1, HSC70, HnRNP I, HnRNP A3, SET, ANP32A and TUFM in CRC, which have been further verified by western blotting and immunohistochemistry. This study demonstrated that LCM in combination with 2D-DIGE is a powerful tool to analyse the proteome of tumour tissues and may lead to the identification of potential novel protein markers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Hongjun Shi
- Wakefield Biomedical Research Unit, University of Otago (Wellington), New Zealand.
| | | | | | | |
Collapse
|
10
|
He ZY, Wen H, Shi CB, Wang J. Up-regulation of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in sentinel lymph nodes of colorectal cancer. World J Gastroenterol 2010; 16:4670-6. [PMID: 20872967 PMCID: PMC2951517 DOI: 10.3748/wjg.v16.i37.4670] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the early metastasis-associated proteins in sentinel lymph node micrometastasis (SLNMM) of colorectal cancer (CRC) through comparative proteome.
METHODS: Hydrophobic protein samples were extracted from individual-matched normal lymph nodes (NLN) and SLNMM of CRC. Differentially expressed protein spots were detected by two-dimensional electrophoresis and image analysis, and subsequently identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry-mass spectrometry and Western blotting, respectively.
RESULTS: Forty proteins were differentially expressed in NLN and SLNMM, and 4 metastasis-concerned proteins highly expressed in SLNMM were identified to be hnRNP A1, Ezrin, tubulin β-2C and Annexin A1. Further immunohistochemistry staining of these four proteins showed their clinicopathological characteristics in lymph node metastasis of CRC.
CONCLUSION: Variations of hydrophobic protein expression in NLN and SLNMM of CRC and increased expression of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in SLNMM suggest a significantly elevated early CRC metastasis.
Collapse
|
11
|
Peng J, Zhang Q, Ma Y, Wang Y, Huang L, Zhang P, Chen J, Qin H. A rat-to-human search for proteomic alterations reveals transgelin as a biomarker relevant to colorectal carcinogenesis and liver metastasis. Electrophoresis 2009; 30:2976-2987. [PMID: 19711377 DOI: 10.1002/elps.200900203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, a modified rat model similar to the classic human evolution of colorectal cancer (CRC) was established. As such, the altered profiles of proteins involved in these processes were further verified in human specimens, so as to determine the potential biomarkers relevant to human CRC development. Protein samples of four specific stages involved in CRC progression ((i) normal mucosa, (ii) adenoma, (iii) carcinoma, and (iv) liver metastasis)) were investigated by 2-DE. One protein spot displayed sequential suppression in the course of colorectal malignant transformation and was identified as transgelin by mass spectrometry. A decrease in its expression in both the epithelium and lamina propria was further confirmed by Western blot and immunohistochemistry analyses. Clinical and pathological parameter analysis revealed that downregulation of transgelin was associated with poor differentiation, and subsequent Dukes Stage and lower survival rate. Paradoxically, its sera level was significantly higher in CRC patients than in healthy donors, and the rise became dramatic, particularly in later Dukes Stages. These results indicate that downregulation of transgelin, in both the epithelium and lamina propria and accompanied with colorectal carcinogenesis, is correlated with worse prognosis. Its elevated serum levels might be the result of pathological hyperplasia of myofibroblasts and smooth muscle cells together with deeper tumor invasion into muscle layers. This altered expression represents interactions between cancer epithelium and stroma, such that transgelin might be a potential marker for CRC genesis and progression.
Collapse
Affiliation(s)
- Jiayuan Peng
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qingfu Zhang
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanlei Ma
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yu Wang
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Long Huang
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Peng Zhang
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jie Chen
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Huanlong Qin
- The Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
12
|
Marchiò S, Arap W, Pasqualini R. Targeting the extracellular signature of metastatic colorectal cancers. Expert Opin Ther Targets 2009; 13:363-79. [PMID: 19236157 DOI: 10.1517/14728220902762910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Colorectal cancer is a leading cause of tumor death, a consequence primarily of the spreading of malignant cells to liver and lung. Despite a range of interventions for liver metastases, the present knowledge of few specific molecular targets may contribute to late diagnosis and poorly effective therapy. OBJECTIVE To review the most innovative methodology employed to profile the signature(s) of metastatic colorectal cancer (mCRC) and to address diagnostic/therapeutic agents. METHODS A broad range Medline search was conducted, with particular attention to the search terms 'liver metastasis signature', in combination with 'targeting' and 'nanotechnology'. RESULTS/CONCLUSIONS Studies aimed at the discovery of molecular signatures of cancers and metastasis are ongoing; the future of cancer/metastasis targeting is nanoparticle-mediated drug delivery.
Collapse
Affiliation(s)
- Serena Marchiò
- Institute for Cancer Research and Treatment, 10060 Candiolo, Italy
| | | | | |
Collapse
|
13
|
Influence of increased adiposity on mitochondrial-associated proteins of the rat colon: a proteomic and transcriptomic analysis. Biochim Biophys Acta Mol Basis Dis 2008; 1782:532-41. [PMID: 18598761 DOI: 10.1016/j.bbadis.2008.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 12/11/2022]
Abstract
Epidemiological studies report obesity to be an important risk factor influencing colon pathologies, yet mechanism(s) are unknown. Recent studies have shown significant elevation of insulin, leptin and triglycerides associated with increased adipose tissue. In situ hybridisation studies have located insulin, leptin and adiponectin receptor expression in the colon epithelia. The influence of increased adiposity and associated deregulation of insulin and adipokines on regulation of the colon epithelium is unknown. Altered adipokine and insulin signalling associated with obesity has an impact on mitochondrial function and mitochondrial dysfunction is increasingly recognised as a contributing factor in many diseases. Proteomics and transcriptomics are potentially powerful methods useful in elucidating the mechanisms whereby obesity increases risk of colon diseases as observed epidemiologically. This study investigated colon mitochondrial-associated protein profiles and corresponding gene expression in colon in response to increased adiposity in a rat model of diet induced obesity. Increased adiposity in diet-induced obese sensitive rats was found to be associated with altered protein expression of 69 mitochondrial-associated proteins involved in processes associated with calcium binding, protein folding, energy metabolism, electron transport chain, structural proteins, protein synthesis and degradation, redox regulation, and transport. The changes in these mitochondrial protein profiles were not correlated with changes at the gene expression level assessed using real-time PCR arrays.
Collapse
|
14
|
Lu M, Faull KF, Whitelegge JP, He J, Shen D, Saxton RE, Chang HR. Proteomics and mass spectrometry for cancer biomarker discovery. Biomark Insights 2007; 2:347-60. [PMID: 19662217 PMCID: PMC2717808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.
Collapse
Affiliation(s)
- Ming Lu
- Gonda/UCLA Breast Cancer Research Laboratory, Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Kym F. Faull
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jianbo He
- Gonda/UCLA Breast Cancer Research Laboratory, Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Dejun Shen
- Gonda/UCLA Breast Cancer Research Laboratory, Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Romaine E. Saxton
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Helena R. Chang
- Gonda/UCLA Breast Cancer Research Laboratory, Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California, Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California,Correspondence: Helena R. Chang, M.D., Ph.D., Revlon/UCLA Breast Center, 200 UCLA Medical Plaza, Suite B265, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095. Tel: (310) 794–5640; Fax: (310) 206-2982;
| |
Collapse
|
15
|
Katayama M, Nakano H, Ishiuchi A, Wu W, Oshima R, Sakurai J, Nishikawa H, Yamaguchi S, Otsubo T. Protein pattern difference in the colon cancer cell lines examined by two-dimensional differential in-gel electrophoresis and mass spectrometry. Surg Today 2006; 36:1085-1093. [PMID: 17123137 DOI: 10.1007/s00595-006-3301-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The pivotal metastatic processes of colorectal cancer (CRC) have yet to be fully investigated by a comprehensive all-inclusive protein analysis. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) to investigate the protein pattern changes during the metastasis of CRC. Two CRC cell lines were investigated: SW480 derived from the primary lesion and SW620 derived from lymph node metastasis in the same patient. METHODS The two cell lines were compared using 2D-DIGE with a maleimide CyDye fluorescent protein labeling technique, which has an enhanced sensitivity for many proteins at a low concentration. A comprehensive proteomics analysis was performed by the dual-labeling method using Cy3 and Cy5 and by LC/MS/MS. In addition, an in vivo experiment of metastasis using nude mice was performed by the injection of the two cell lines into the spleen. RESULTS Among approximately 1,500 proteins, we detected 9 protein spots with definitively significant changes between the two cell lines. Three out of the nine proteins were validated by a Western blot analysis. Alpha-enolase and triosephosphate isomerase were significantly upregulated in SW620 in comparison to SW480. Annexin A2 (annexin II) was significantly downregulated in SW620 compared to SW480. Neither liver metastasis nor peritoneal dissemination was established in the metastatic experiment using SW480 but some liver and peritoneal metastases occurred in the experiment using SW620. An in vivo metastatic experiment using SW620 showed the expressions of alpha-enolase and triosephosphate isomerase to increase in the liver metastases in comparison to those in the splenic implanted lesion. The expressions of triosephosphate isomerase increased in the peritoneal lesions in comparison to those in the splenic implanted lesion. CONCLUSIONS 2D-DIGE and LC/MS/MS techniques identified nine proteins that increased significantly more in SW620 than in SW480. The finding of our in vivo metastatic experiment suggests that alpha-enolase and triosephosphate isomerase, at least in part, may be associated with the metastatic process of these two cell lines.
Collapse
Affiliation(s)
- Masafumi Katayama
- Division of Gastroenterological Surgery, St. Marianna University Hospital, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoshida Y, Kishimoto T, Ishiguro H, Nagai Y, Koda K, Takiguchi N, Miyazaki M, Ishikura H. Dexamethasone modifies the susceptibility to serum cytotoxicity and increases the metastatic efficiency of a colon carcinoma cell line. Exp Mol Pathol 2006; 81:77-84. [PMID: 16380115 DOI: 10.1016/j.yexmp.2005.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/14/2005] [Accepted: 10/20/2005] [Indexed: 11/15/2022]
Abstract
Metastatic inefficiency is a phenomenon by which a majority of tumor cells is lost in the blood stream during the metastatic process. We investigated the effects of dexamethasone (DEX), a synthesized glucocorticoid, on the serum susceptibility of a colon carcinoma cell line, HT-29, with respect to metastatic inefficiency. The susceptibility to serum cytotoxicity of these carcinoma cells is possibly an important factor in metastatic inefficiency. In this study, we used glucocorticoid because it modifies the function of the plasma membrane and has been shown to enhance the hematogenous metastasis of some tumor cells. Using HT-29 cells that had been treated with DEX in vitro, the following factors were evaluated: the metastasis of intrasplenic injected cells; in vitro and in vivo proliferation; motility; the production of matrix metalloproteinases (MMPs); and the expression of the membrane complement regulatory proteins CD46, CD55, and CD59. The number of viable cells in the liver after an intraportal injection of tumor cells was determined by the expression of human beta-globin mRNA that is aberrantly expressed in HT-29 cells. In addition, we investigated 100% serum-induced proliferation, susceptibility, and apoptosis. Treatment with DEX was found to accelerate liver metastasis; here, the number of metastatic colonies and the weight of the liver were both significantly increased in DEX-treated HT-29 (HT-29DEX) cells. In contrast, there was no difference in terms of cell motility; the production of MMPs; or the expression of CD46, CD55, or CD59 between the HT-29 and HT-29DEX cells. The HT-29DEX cells exhibited enhanced proliferation in the serum, as well as resistance to cytotoxicity when exposed to 100% serum. In addition, DEX slightly inhibited serum-induced apoptosis. Finally, the expression of colon cancer-derived beta-globin mRNA was detectable 24 h after intravenous injection, but only in samples obtained from the HT-29DEX-, but not in those from the HT-29-inoculated mice. These results indicate that DEX reduced the metastatic inefficiency of the HT-29 cells, resulting in a hematogenous metastasis-prone phenotype. It is thus expected that the acquisition of resistance against serum cytotoxicity is among the mechanisms that contribute to the efficiency of hematogeneous metastasis.
Collapse
Affiliation(s)
- Yukio Yoshida
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, Mogg M, Schreiber M, Feuerstein I, Huck CW, Stecher G, Bonn GK, Huber LA. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/ MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 2006; 27:1641-50. [PMID: 16550499 DOI: 10.1002/elps.200500857] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present study, we used 2-D differential gel electrophoresis (2-D DIGE) and MS to screen biomarker candidates in serum samples obtained from 39 patients with breast cancer and 35 controls. First, we pooled the serum samples matched with age and menopausal status. Then, we depleted the two most abundant proteins albumin and IgG by immunoaffinity chromatography under partly denaturing conditions in order to enrich low-abundance proteins and proteins with low molecular weight. Concentrated and desalted samples were labeled with three different CyDyes including one internal standard, pooled from all the samples, and separated with 2-D DIGE in triplicate experiments. Biological variations of the protein expression level were analyzed with DeCyder software and evaluated for reproducibility and statistical significance. The profile of differentially expressed protein spots between patients and controls revealed proapolipoprotein A-I, transferrin, and hemoglobin as up-regulated and three spots, apolipoprotein A-I, apolipoprotein C-III, and haptoglobin alpha2 as down-regulated in patients. Finally, routine clinical immunochemical reactions were used to validate selected candidate biomarkers by quantitative determination of specific proteins in all individual serum samples. The serum level of transferrin correlated well with the 2-D-DIGE results. However, the serum levels of apolipoprotein A-I and haptoglobin could not be detected with the clinical routine diagnostic tests. This demonstrated an advantage 2-D DIGE still has over other techniques. 2-D DIGE can distinguish between isoforms of proteins, where the overall immunochemical quantification does fail due to a lack of isoform-special antibodies.
Collapse
Affiliation(s)
- Hong-Lei Huang
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pawlik TM, Hawke DH, Liu Y, Krishnamurthy S, Fritsche H, Hunt KK, Kuerer HM. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer 2006; 6:68. [PMID: 16542425 PMCID: PMC1431555 DOI: 10.1186/1471-2407-6-68] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/16/2006] [Indexed: 12/25/2022] Open
Abstract
Background Isotope-coded affinity tag (ICAT) tandem mass spectrometry (MS) allows for qualitative and quantitative analysis of paired protein samples. We sought to determine whether ICAT technology could quantify and identify differential expression of tumor-specific proteins in nipple aspirate fluid (NAF) from the tumor-bearing and contralateral disease-free breasts of patients with unilateral early-stage breast cancer. Methods Paired NAF samples from 18 women with stage I or II unilateral invasive breast carcinoma and 4 healthy volunteers were analyzed using ICAT labeling, sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), liquid chromatography, and MS. Proteins were identified by sequence database analysis. Western blot analysis of NAF from an independent sample set from 12 women (8 with early-stage breast cancer and 4 healthy volunteers) was also performed. Results 353 peptides were identified from tandem mass spectra and matched to peptide sequences in the National Center for Biotechnology Information database. Equal numbers of peptides were up- versus down-regulated. Alpha2HS-glycoprotein [Heavy:Light (H:L) ratio 0.63] was underexpressed in NAF from tumor-bearing breasts, while lipophilin B (H:L ratio 1.42), beta-globin (H:L ratio 1.98), hemopexin (H:L ratio 1.73), and vitamin D-binding protein precursor (H:L ratio 1.82) were overexpressed. Western blot analysis of pooled samples of NAF from healthy volunteers versus NAF from women with breast cancer confirmed the overexpression of vitamin D-binding protein in tumor-bearing breasts. Conclusion ICAT tandem MS was able to identify and quantify differences in specific protein expression between NAF samples from tumor-bearing and disease-free breasts. Proteomic screening techniques using ICAT and NAF may be used to find markers for diagnosis of breast cancer.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - David H Hawke
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yanna Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Herbert Fritsche
- Department of Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Henry M Kuerer
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Nakashima D, Uzawa K, Kasamatsu A, Koike H, Endo Y, Saito K, Hashitani S, Numata T, Urade M, Tanzawa H. Protein expression profiling identifies maspin and stathmin as potential biomarkers of adenoid cystic carcinoma of the salivary glands. Int J Cancer 2006; 118:704-13. [PMID: 16094606 DOI: 10.1002/ijc.21318] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common malignant tumors of the salivary glands. It tends to grow slowly but is associated with a poor prognosis compared to other malignant salivary gland tumors. To identify specific markers of ACC, we examined protein expression profiling in ACC xenograft and normal salivary glands (NSG) using fluorescent 2-dimensional differential in-gel electrophoresis (2-D-DIGE), an emerging technique for comparative proteomics, that improves the reproducibility and reliability of differential protein expression analysis between the samples. To identify the proteins, matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting was carried out. Using these strategies, we detected 4 upregulated proteins and 5 downregulated proteins in ACC xenograft. Maspin and stathmin were selected for further analyses. Western blotting and immunohistochemical staining showed a higher expression of these proteins in ACC xenograft and clinical ACC tissue compared to NSG. Furthermore, Expression of these proteins was correlated with the histologic grading of ACC (n = 10). Therefore, our data indicate that maspin and stathmin may be not only useful biomarkers of ACC but also markers of biologic behavior in this tumor.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Adenoid Cystic/metabolism
- Carcinoma, Adenoid Cystic/secondary
- Electrophoresis, Gel, Two-Dimensional
- Female
- Genes, Tumor Suppressor
- Humans
- Male
- Mice
- Mice, Nude
- Middle Aged
- Proteomics
- Salivary Gland Neoplasms/metabolism
- Salivary Gland Neoplasms/pathology
- Salivary Glands/metabolism
- Serpins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Stathmin/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Dai Nakashima
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|