1
|
A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector. BMC Biotechnol 2017; 17:24. [PMID: 28245848 PMCID: PMC5331646 DOI: 10.1186/s12896-017-0341-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short hairpin RNA (shRNA) is an established and effective tool for stable knock down of gene expression. Lentiviral vectors can be used to deliver shRNAs, thereby providing the ability to infect most mammalian cell types with high efficiency, regardless of proliferation state. Furthermore, the use of inducible promoters to drive shRNA expression allows for more thorough investigations into the specific timing of gene function in a variety of cellular processes. Moreover, inducible knockdown allows the investigation of genes that would be lethal or otherwise poorly tolerated if constitutively knocked down. Lentiviral inducible shRNA vectors are readily available, but unfortunately the process of cloning, screening, and testing shRNAs can be time-consuming and expensive. Therefore, we sought to refine a popular vector (Tet-pLKO-Puro) and streamline the cloning process with efficient protocols so that researchers can more efficiently utilize this powerful tool. METHODS: First, we modified the Tet-pLKO-Puro vector to make it easy ("EZ") for molecular cloning (EZ-Tet-pLKO-Puro). Our primary modification was to shrink the stuffer region, which allows vector purification via polyethylene glycol precipitation thereby avoiding the need to purify DNA through agarose. In addition, we generated EZ-Tet-pLKO vectors with hygromycin or blasticidin resistance to provide greater flexibility in cell line engineering. Furthermore, we provide a detailed guide for utilizing these vectors, including shRNA design strategy and simplified screening methods. RESULTS Notably, we emphasize the importance of loop sequence design and demonstrate that the addition of a single mismatch in the loop stem can greatly improve shRNA efficiency. Lastly, we display the robustness of the system with a doxycycline titration and recovery time course and provide a cost/benefit analysis comparing our system with purchasing pre-designed shRNA vectors. CONCLUSIONS Our aim was twofold: first, to take a very useful shRNA vector and make it more amenable for molecular cloning and, secondly, to provide a streamlined protocol and rationale for cost-effective design, cloning, and screening of shRNAs. With this knowledge, anyone can take advantage of this powerful tool to inducibly knockdown any gene of their choosing.
Collapse
|
2
|
Huang CX, Chen N, Wu XJ, He Y, Huang CH, Liu H, Wang WM, Wang HL. Zebrafish let-7b acts downstream of hypoxia-inducible factor-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation. Life Sci 2017; 171:21-29. [PMID: 28077310 DOI: 10.1016/j.lfs.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/13/2023]
Abstract
AIMS Hypoxia-inducible factor-1α (HIF-1α) is a transcriptional regulator of cellular responses to hypoxic stress. MicroRNAs (miRNAs) play an essential role in hypoxia-mediated cellular responses. Previous studies have identified some let-7 family members as hypoxia-regulated miRNAs (HRMs). In the present study, we aimed to investigate whether zebrafish let-7b/7f contribute cellular hypoxic response in a Hif-1α-dependent manner. MAIN METHODS Stable suppression of zebrafish hif-1α was achieved by microinjection of an optimized short-hairpin RNA (shRNA) expression vector. Next-generation sequencing was conducted to characterize miRNA and mRNA expression profiles. MiRNA promoter analysis and target detection was performed by dual-luciferase assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to determine the expression of let-7b/7f, Hif-1α and Foxh1. Proliferation of ZF4 cells was examined using Cell Counting Kit-8 (CCK-8) and cell cycle progression was analyzed by flow cytometry assay. KEY FINDINGS Correlation between 7 miRNAs and 76 putative targets was identified based on integrated analysis of miRNA-mRNA profiles. Let-7b and let-7f were further considered as potential HRMs, with let-7b further validated as Hif-1α up-regulated. In addition, Forkhead-box H1 (Foxh1) was confirmed as a bona fide downstream target of let-7b. Furthermore, overexpression of both let-7b and let-7f repressed cell proliferation through blocking cell cycle progression of the G1-S transition. SIGNIFICANCE Our findings for the first time suggest zebrafish let-7b acts downstream of Hif-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation at least in part through the downregulation of foxh1. We also identified 4 novel potential HIF-1α-regulated miRNAs in zebrafish.
Collapse
Affiliation(s)
- Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Nan Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Xin-Jie Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Cui-Hong Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China.
| |
Collapse
|
3
|
Wang J, Liang H, Zhao Y, Liu X, Yang K, Sui A. Construction and identification of an RNA interference lentiviral vector targeting the mouse TNF-α gene. Exp Ther Med 2015; 10:2283-2288. [PMID: 26668629 DOI: 10.3892/etm.2015.2813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to construct RNA interference (RNAi) lentiviral vector particles targeting the mouse tumor necrosis factor-α (TNF-α) gene. Three types of small interfering RNA (siRNA) targeting the mouse TNF-α gene were designed, synthesized and transfected into RAW264.7 cells. Screening was performed to identify the siRNA sequence exhibiting the highest inhibition efficiency; based on this, recombinant lentiviral plasmids were constructed and co-transfected into 293T cells with packaging plasmids for the production of lentiviral particles. The screening results showed that the TNF-α mRNA expression levels of the three siRNA groups were significantly lower than those of the negative control group, with the highest inhibition rate in the siRNA2 group (83.09%). Similarly, the expression levels of TNF-α protein in the three siRNA groups were significantly lower than those of the negative control group, and the highest inhibition rate was found in the siRNA2 group (51.16%). The mRNA expression of interleukin (IL)-1β and IL-6 showed no significant difference among the siRNA groups and the negative control. The recombinant lentiviral shuttle plasmid was constructed, and electrophoresis revealed the polymerase chain reaction product to be 343 bp, while that of the empty vector was 306 bp; DNA sequencing showed partial insertion. The virus titer was calculated to be 2×106 TU/µl. In conclusion, RNAi lentiviral vector particles targeting the mouse TNF-α gene were successfully obtained in the present study. This method may be used to produce lentiviral vector for the in vivo study of RNAi gene therapy targeting TNF-α.
Collapse
Affiliation(s)
- Jibo Wang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongda Liang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yingjie Zhao
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiangping Liu
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kun Yang
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aihua Sui
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
4
|
Chande AG, Raina S, Dhamne H, Kamat RH, Mukhopadhyaya R. Multiple platforms of a HIV-2 derived lentiviral vector for expanded utility. Plasmid 2012; 69:90-5. [PMID: 23159456 DOI: 10.1016/j.plasmid.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
Using the Indian Human immunodeficiency virus type 2 (HIV-2) isolate derived lentiviral vector (LV) system reported earlier, we have derived multiple differently configured transfer vectors. Among the features imparted, the novel ones include a blue/white colony screening platform, a shorter vector backbone candidate and availability of default dual tags. Simultaneously, panels with different utilities were also made using this LV. These include neomycin or puromycin or hygromycin selection markers, with options of default promoter, dual multiple cloning site (MCS) availability and drug inducible transgene expression. All the transfer vectors contain the main MCS with the option of single step sub-cloning of a PCR amplified transgene cassette by T/A cloning strategy apart from cohesive and blunt end cloning sites, as described for the original parent vector. Each transfer vector format was tested by appropriate transgene expression function by transduction of target cells. This is the most comprehensive HIV-2 based lentiviral vector system developed so far and it will significantly aid in preferential applications and thus increase its utility as a versatile system for gene transfer technology.
Collapse
Affiliation(s)
- Ajit G Chande
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer-ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | | | | | |
Collapse
|
5
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
6
|
Kumar LD, Clarke AR. Gene manipulation through the use of small interfering RNA (siRNA): from in vitro to in vivo applications. Adv Drug Deliv Rev 2007; 59:87-100. [PMID: 17434644 DOI: 10.1016/j.addr.2007.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 03/04/2007] [Indexed: 12/19/2022]
Abstract
The conventional approach to investigate genotype-phenotype relationships has been the generation of gene targeted murine strains. However, the emergence of RNAi technologies has opened the possibility of much more rapid (and indeed more cost effective) genetic manipulation in vivo at the level of the transcriptome. Successful application of RNAi in vivo depends on intracellular targeted delivery of siRNA/shRNA molecules for efficient knockdown of the desired gene. In this review, we discuss the rationale and different strategies of using siRNA/shRNA for accomplishing the silencing of targeted genes in a spatial and /or temporally regulated manner. We also summarise the steps involved in extending these approaches to in vivo applications, with a specific focus upon the development of silencing in the mouse.
Collapse
Affiliation(s)
- Lekha Dinesh Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
7
|
Grayson ACR, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 2007; 23:1868-76. [PMID: 16845585 DOI: 10.1007/s11095-006-9009-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The goals of this study were as follows: 1) to evaluate the efficacy of different polyethylenimine (PEI) structures for siRNA delivery in a model system, and 2) to determine the biophysical and structural characteristics of PEI that relate to siRNA delivery. MATERIALS AND METHODS Biophysical characterization (effective diameter and zeta potential), cytotoxicities, relative binding affinities and in vitro transfection efficiencies were determined using nano-complexes formed from PEI's of 800, 25,000, (both branched) and 22,000 (linear) molecular weights at varying N:P ratios and siRNA concentrations. The HR5-CL11 cell line stably expressing luciferase was used as a model system in vitro. RESULTS Successful siRNA delivery was observed within a very narrow window of conditions, and only with the 25,000 branched PEI at an N:P ratio of 6:1 and 8:1 and with 200 nM siRNA. While the zeta potential and size of PEI:siRNA complexes correlated to transfection efficacy in some cases, complex stability may also affect transfection efficacy. CONCLUSIONS The ability of PEI to transfer functionally active siRNA to cells in culture is surprisingly dependent on its biophysical and structural characteristics when compared to its relative success and ease of use for DNA delivery.
Collapse
Affiliation(s)
- Amy C Richards Grayson
- Department of Biomedical Engineering, The School of Chemical and Biomolecular Engineering, 270 Olin Hall, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
8
|
McIntyre GJ, Fanning GC. Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol 2006; 6:1. [PMID: 16396676 PMCID: PMC1343552 DOI: 10.1186/1472-6750-6-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short hairpin RNA (shRNA) encoded within an expression vector has proven an effective means of harnessing the RNA interference (RNAi) pathway in mammalian cells. A survey of the literature revealed that shRNA vector construction can be hindered by high mutation rates and the ensuing sequencing is often problematic. Current options for constructing shRNA vectors include the use of annealed complementary oligonucleotides (74 % of surveyed studies), a PCR approach using hairpin containing primers (22 %) and primer extension of hairpin templates (4 %). RESULTS We considered primer extension the most attractive method in terms of cost. However, in initial experiments we encountered a mutation frequency of 50 % compared to a reported 20-40 % for other strategies. By modifying the technique to be an isothermal reaction using the DNA polymerase Phi29, we reduced the error rate to 10 %, making primer extension the most efficient and cost-effective approach tested. We also found that inclusion of a restriction site in the loop could be exploited for confirming construct integrity by automated sequencing, while maintaining intended gene suppression. CONCLUSION In this study we detail simple improvements for constructing and sequencing shRNA that overcome current limitations. We also compare the advantages of our solutions against proposed alternatives. Our technical modifications will be of tangible benefit to researchers looking for a more efficient and reliable shRNA construction process.
Collapse
Affiliation(s)
- Glen J McIntyre
- Johnson and Johnson Research Pty Ltd, 1 Central Ave, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- The school of Biological and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory C Fanning
- Johnson and Johnson Research Pty Ltd, 1 Central Ave, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Tibotec BVBA, Gen De Wittelaan L 11 B3, 2800 Mechelen, Belgium
| |
Collapse
|