1
|
Cheng T, Ge T, Zhao L, Hou Y, Xia J, Zhao L. Improved production of andrimid in Erwinia persicina BST187 strain by fermentation optimization. BMC Microbiol 2023; 23:268. [PMID: 37749510 PMCID: PMC10519088 DOI: 10.1186/s12866-023-02946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Andrimid is reported to be a novel kind of polyketide-nonribosomal peptide hybrid product (PK-NRPs) that inhibits fatty acid biosynthesis in bacteria. Considering its great potential in biomedicine and biofarming, intensive studies have been conducted to increase the production of andrimid to overcome the excessive costs of chemosynthesis. In screening for species with broad-spectrum antibacterial activity, we detected andrimid in the fermentation products of Erwinia persicina BST187. To increase andrimid production, the BST187 fermentation medium formulation and fermentation conditions were optimized by using systematic design of experiments (One-Factor-At-A-Time, Plackett-Burman design, Response Surface Methodology). RESULTS The results indicate that the actual andrimid production reached 140.3 ± 1.28 mg/L under the optimized conditions (trisodium citrate dihydrate-30 g/L, beef extract-17.1 g/L, MgCl2·6H2O-100 mM, inoculation amount-1%, initial pH-7.0, fermentation time-36 h, temperature-19.7℃), which is 20-fold greater than the initial condition without optimization (7.00 ± 0.40 mg/L), consistent with the improved antibacterial effect of the fermentation supernatant. CONCLUSIONS The present study provides valuable information for improving andrimid production via optimization of the fermentation process, which will be of great value in the future industrialization of andrimid production.
Collapse
Affiliation(s)
- Tingfeng Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongling Ge
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lunqiang Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuyong Hou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jianye Xia
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|