1
|
Ward CT, Boorman DW, Afshar A, Prabhakar A, Fiza B, Pyronneau LR, Kimathi A, Paul C, Moser B, Moll V. A Screening Tool to Detect Chronic Critically Ill Cardiac Surgery Patients at Risk for Low Levels of Testosterone and Somatomedin C: A Prospective Observational Pilot Study. Cureus 2021; 13:e15298. [PMID: 34221757 PMCID: PMC8237911 DOI: 10.7759/cureus.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
Objective The neuroendocrine response to critical illness is dichotomous as it is adaptive during the acute phase then transitions to maladaptive as critical illness becomes prolonged in 25-30% of patients. Presently, monitoring all critically ill patients for endocrinopathies is not the standard of care. However, given the negative impact on patient prognosis, a need to identify those at risk for endocrinopathies, may exist. Thus, a screening tool to identify endocrinopathies along the somatotroph and gonadal axes in a cardiothoracic surgery population was developed. Methods A prospective observational pilot study was conducted in two cardiothoracic surgery intensive care units (ICU) within a multi-site healthcare system. Total testosterone and somatomedin C levels were obtained from 20 adult patients who remained in the ICU for greater than seven days after cardiothoracic surgery and were tolerating nutrition, had a risk of malnutrition and a mobility score of moderate to dependent assistance. Results Twenty patients were included for descriptive analysis (seven females). Thirteen patients tested low for total testosterone, with males more likely to have a testosterone-related endocrinopathy as compared to females (100% vs. 0 to 43%, p = 0.0072). A higher proportion of low somatomedin C levels was found in females than males (57% vs. 31%); however, the difference was not statistically significant (p = 0.251). Conclusions The screening tool used in this pilot study accurately predicted low total testosterone in all men and reasonably predicted low somatomedin C in a majority of women. However, the ability of the tool to predict low total testosterone in women and low somatomedin C in men is less certain. A gender-specific screening tool might be necessary to predict hormonal deficiencies.
Collapse
Affiliation(s)
- Ceressa T Ward
- Anesthesiology, Emory University School of Medicine, Atlanta, USA
| | - David W Boorman
- Anesthesiology, Emory University School of Medicine, Atlanta, USA
| | - Ava Afshar
- Pharmacy, Emory University Hospital Midtown, Atlanta, USA
| | - Amit Prabhakar
- Anesthesiology, Emory University School of Medicine, Atlanta, USA
| | - Babar Fiza
- Anesthesiology, Emory University School of Medicine, Atlanta, USA
| | | | - Amber Kimathi
- Food and Nutrition, Emory University Hospital Midtown, Atlanta, USA
| | - Carmen Paul
- Rehab Therapy, Emory University Hospital Midtown, Atlanta, USA
| | - Berthold Moser
- Anesthesiology and Critical Care, See-Spital Horgen, Horgen, CHE
| | - Vanessa Moll
- Anesthesiology, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
2
|
Boesen AP, Dideriksen K, Couppé C, Magnusson SP, Schjerling P, Boesen M, Aagaard P, Kjaer M, Langberg H. Effect of growth hormone on aging connective tissue in muscle and tendon: gene expression, morphology, and function following immobilization and rehabilitation. J Appl Physiol (1985) 2014; 116:192-203. [DOI: 10.1152/japplphysiol.01077.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is unknown whether loss in musculotendinous tissue during inactivity can be counteracted by growth hormone (GH), and whether GH accelerate rehabilitation in aging individuals. Elderly men (65–75 yr; n = 12) had one leg immobilized 2 wk followed by 6 wk of retraining and were randomly assigned to daily injections of recombinant GH (rhGH; n = 6) or placebo (Plc; n = 6). Cross-sectional area (CSA), muscle strength (MVC), and biomechanical properties of m. quadriceps and patellar tendon were determined. Muscle and tendon biopsies were analyzed for gene expressions (mRNA) of collagen (COL1A1/3A1) and insulin-like growth factors (IGF-1Ea/Ec). Fibril morphology was analyzed by transmission electron microscope (TEM). In tendon, CSA and biomechanical properties did not change following immobilization, but an increase in CSA was found after 6 wk of rehabilitation in both groups. The changes were more pronounced when GH was injected. Furthermore, tendon stiffness increased in the GH group. Muscle CSA declined after immobilization in the Plc but not in the GH group. Muscle CSA increased during retraining, with a significantly larger increase in the GH group compared with the Plc group. Both a time and a group effect were seen for IGF-1Ea/Ec and COL1A1/3A1 mRNA expression in muscle, with a difference between GH and Plc. IGF-1Ea/Ec and COL-1A1/3A1 mRNA expression increased in muscle following immobilization and retraining in subjects receiving GH, whereas an increase in IGF-1Ec mRNA expression was seen in the Plc group only after retraining. In conclusion, in elderly humans, GH seems to have a matrix stabilizing effect during inactivity and rehabilitation by stimulating collagen expression in the musculotendinous tissue and increasing tendon CSA and stiffness.
Collapse
Affiliation(s)
- A. P. Boesen
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K. Dideriksen
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C. Couppé
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - S. P. Magnusson
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - P. Schjerling
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M. Boesen
- Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - P. Aagaard
- Institute of Exercise Physiology and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark; and
| | - M. Kjaer
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H. Langberg
- Department of Ortopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, CopenRehab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Boesen AP, Dideriksen K, Couppé C, Magnusson SP, Schjerling P, Boesen M, Kjaer M, Langberg H. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration. J Physiol 2013; 591:6039-52. [PMID: 24081158 DOI: 10.1113/jphysiol.2013.261263] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20-30 years; n = 20) were randomly assigned to daily recombinant human GH (rhGH) (33-50 μg kg(-1) day(-1)) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity-related decline in tendon stiffness and LOX, and results in increased tendon CSA and stiffness during rehabilitation. GH has a matrix-stabilising effect during periods of inactivity and rehabilitation in humans.
Collapse
Affiliation(s)
- A P Boesen
- A. P. Boesen: Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Graham MR, Evans P, Thomas NE, Davies B, Baker JS. Changes in endothelial dysfunction and associated cardiovascular disease morbidity markers in GH-IGF axis pathology. Am J Cardiovasc Drugs 2010; 9:371-81. [PMID: 19929035 DOI: 10.2165/11312100-000000000-00000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arterial endothelial dysfunction is an early event in the pathogenesis of atherosclerosis and predisposes individuals to the deposition of unstable atherosclerotic plaques. It can also lead to increased arterial stiffness, which is an accepted cause of increased arterial pulse wave velocity (APWV). Endothelial dysfunction is reversed by recombinant human growth hormone (rhGH) therapy in patients with growth hormone (GH) deficiency (GHD), favorably influencing the risk for atherogenesis. Endogenous human growth hormone (hGH), secreted by the anterior pituitary, and levels of insulin-like growth factor-I (IGF-I), produced in response to hGH stimulation of the liver, peak during early adulthood, but decline throughout adulthood. It is suspected that low-grade inflammatory cardiovascular pathophysiologic markers such as homocysteine, nitric oxide, C-reactive protein (CRP), and fibrinogen and plasminogen activator inhibitor along with changes in lipid and glucose metabolism may all contribute to GHD-associated metabolic and cardiovascular complications. These effects are associated with increased APWV, but are attenuated by rhGH therapy in GHD. GH replacement increases IGF-I levels and reduces CRP and large-artery stiffness. Reviews of rhGH in the somatopause have not been overtly favorable. Whereas reviews of rhGH/rhIGF-I combinations in GH resistance are more positive than those for rhGH alone, their combined use in the somatopause is limited. Senescent individuals may benefit from such a combination.
Collapse
Affiliation(s)
- Michael R Graham
- The Newman Centre for Sport and Exercise Research, Newman University College, Birmingham, UK.
| | | | | | | | | |
Collapse
|
5
|
Weitzel LRB, Sandoval PA, Mayles WJ, Wischmeyer PE. Performance-enhancing sports supplements: role in critical care. Crit Care Med 2010; 37:S400-9. [PMID: 20046127 DOI: 10.1097/ccm.0b013e3181b6f2e6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many performance-enhancing supplements and/or drugs are increasing in popularity among professional and amateur athletes alike. Although the uncontrolled use of these agents can pose health risks in the general population, their clearly demonstrated benefits could prove helpful to the critically ill population in whom preservation and restoration of lean body mass and neuromuscular function are crucial. Post-intensive care unit weakness not only impairs post-intensive care unit quality of life but also correlates with intensive care unit mortality. This review covers a number of the agents known to enhance athletic performance, and their possible role in preservation of muscle function and prevention/treatment of post-intensive care unit weakness in critically ill patients. These agents include testosterone analogues, growth hormone, branched chain amino acid, glutamine, arginine, creatine, and beta-hydryoxy-beta-methylbutyrate. Three of the safest and most effective agents in enhancing athletic performance in this group are creatine, branched-chain amino acid, and beta-hydryoxy-beta-methylbutyrate. However, these agents have received very little study in the recovering critically ill patient suffering from post-intensive care unit weakness. More placebo-controlled studies are needed in this area to determine efficacy and optimal dosing. It is very possible that, under the supervision of a physician, many of these agents may prove beneficial in the prevention and treatment of post-intensive care unit weakness.
Collapse
Affiliation(s)
- Lindsay-Rae B Weitzel
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Protein catabolism is common among critically ill patients, contributing to organ dysfunction, muscle weakness, prolonged mechanical ventilation and length of stay in the ICU, with adverse impact on patient prognosis and resource utilization. Neither adequate enteral nutrition nor parenteral nutrition stems this catabolism. Recombinant growth hormone supplementation in surgical trauma and burn injury patients has demonstrated nitrogen retention, increased insulin-like growth factor-1 levels, decreased length of stay and improved survival. As a result, growth hormone became widely used in the ICU, until two large randomized trials in 1999 noted increased mortality associated with infection and organ dysfunction. RECENT FINDINGS Small clinical trials have revisited growth hormone supplementation in prolonged critical illness, demonstrating nitrogen conservation and increased serum levels of insulin-like growth factor-1 and insulin-like growth factor-1 binding protein in patients receiving adequate nutrition support. These trials suggest growth hormone supplementation may be safe and more efficacious in a subclass of chronic critically ill patients. SUMMARY Prior to proposing new prospective randomized clinical trials, case reports describing anecdotal experience with growth hormone in selected chronically critically ill patients may provide insight into redefining the ICU population most likely to benefit from growth hormone supplementation. Current guidelines continue to recommend against the use of growth hormone in critical illness.
Collapse
|