1
|
Guo S, Wang E, Wang B, Xue Y, Kuang Y, Liu H. Comprehensive Multiomics Analyses Establish the Optimal Prognostic Model for Resectable Gastric Cancer : Prognosis Prediction for Resectable GC. Ann Surg Oncol 2024; 31:2078-2089. [PMID: 37996637 DOI: 10.1245/s10434-023-14249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Prognostic models based on multiomics data may provide better predictive capability than those established at the single-omics level. Here we aimed to establish a prognostic model for resectable gastric cancer (GC) with multiomics information involving mutational, copy number, transcriptional, methylation, and clinicopathological alterations. PATIENTS AND METHODS The mutational, copy number, transcriptional, methylation data of 268, 265, 226, and 252 patients with stages I-III GC were downloaded from the TCGA database, respectively. Alterations from all omics were characterized, and prognostic models were established at the individual omics level and optimized at the multiomics level. All models were validated with a cohort of 99 patients with stages I-III GC. RESULTS TTN, TP53, and MUC16 were among the genes with the highest mutational frequency, while UBR5, ZFHX4, PREX2, and ARID1A exhibited the most prominent copy number variations (CNVs). Upregulated COL10A1, CST1, and HOXC10 and downregulated GAST represented the biggest transcriptional alterations. Aberrant methylation of some well-known genes was revealed, including CLDN18, NDRG4, and SDC2. Many alterations were found to predict the patient prognosis by univariate analysis, while four mutant genes, two CNVs, five transcriptionally altered genes, and seven aberrantly methylated genes were identified as independent risk factors in multivariate analysis. Prognostic models at the single-omics level were established with these alterations, and optimized combination of selected alterations with clinicopathological factors was used to establish a final multiomics model. All single-omics models and the final multiomics model were validated by an independent cohort. The optimal area under the curve (AUC) was 0.73, 0.71, 0.71, and 0.85 for mutational, CNV, transcriptional, and methylation models, respectively. The final multiomics model significantly increased the AUC to 0.92 (P < 0.05). CONCLUSIONS Multiomics model exhibited significantly better capability in predicting the prognosis of resectable GC than single-omics models.
Collapse
Affiliation(s)
- Shaohua Guo
- Department of General Surgery, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Erpeng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Baishi Wang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yonggan Xue
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yanshen Kuang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongyi Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Lumour-Mensah T, Lemos B. Defining high confidence targets of differential CpG methylation in response to in utero arsenic exposure and implications for cancer risk. Toxicol Appl Pharmacol 2024; 482:116768. [PMID: 38030093 PMCID: PMC10889851 DOI: 10.1016/j.taap.2023.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America; R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
3
|
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022; 12:652. [PMID: 35625579 PMCID: PMC9171580 DOI: 10.3390/biom12050652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1411713135, Iran;
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
4
|
BMP3 Affects Cortical and Trabecular Long Bone Development in Mice. Int J Mol Sci 2022; 23:ijms23020785. [PMID: 35054971 PMCID: PMC8775420 DOI: 10.3390/ijms23020785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have a major role in tissue development. BMP3 is synthesized in osteocytes and mature osteoblasts and has an antagonistic effect on other BMPs in bone tissue. The main aim of this study was to fully characterize cortical bone and trabecular bone of long bones in both male and female Bmp3−/− mice. To investigate the effect of Bmp3 from birth to maturity, we compared Bmp3−/− mice with wild-type littermates at the following stages of postnatal development: 1 day (P0), 2 weeks (P14), 8 weeks and 16 weeks of age. Bmp3 deletion was confirmed using X-gal staining in P0 animals. Cartilage and bone tissue were examined in P14 animals using Alcian Blue/Alizarin Red staining. Detailed long bone analysis was performed in 8-week-old and 16-week-old animals using micro-CT. The Bmp3 reporter signal was localized in bone tissue, hair follicles, and lungs. Bone mineralization at 2 weeks of age was increased in long bones of Bmp3−/− mice. Bmp3 deletion was shown to affect the skeleton until adulthood, where increased cortical and trabecular bone parameters were found in young and adult mice of both sexes, while delayed mineralization of the epiphyseal growth plate was found in adult Bmp3−/− mice.
Collapse
|
5
|
Guo H, Li T, Peng C, Mao Q, Shen B, Shi M, Lu H, Xiao T, Yang A, Liu Y. Overexpression of lncRNA A2M-AS1 inhibits cell growth and aggressiveness via regulating the miR-587/bone morphogenetic protein 3 axis in lung adenocarcinoma. Hum Exp Toxicol 2022; 41:9603271221138971. [PMID: 36461613 DOI: 10.1177/09603271221138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor that occurs in the lungs. Numerous reports have substantiated the participation of long non-coding RNAs (lncRNAs) in the tumorigenesis of LUAD. Previously, lncRNA alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) was confirmed to be an important regulator in the biological processes of LUAD and dysregulation of A2M-AS1 was associated with non-small cell lung cancer (NSCLC) progression. However, the precise mechanism of A2M-AS1 in LUAD has not been elucidated. Therefore, our study was designed to investigate the detailed molecular mechanism of A2M-AS1 in LUAD. Herein, the expression of lncRNA A2M-AS1, microRNA (miRNA) miR-587, and bone morphogenetic protein 3 (BMP3) in LUAD cell lines and tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. The viability, proliferation, migration and invasion of LUAD cells were tested by cell counting kit-8 (CCK-8), colony formation and Transwell assays. In vivo tumor growth was investigated by xenograft animal experiment. Interactions among A2M-AS1, miR-587 and BMP3 were measured by RNA pulldown and luciferase reporter assays. In this study, A2M-AS1 was downregulated in LUAD tissues and cells and related to poor prognosis in LUAD patients. A2M-AS1 overexpression suppressed LUAD cell proliferation, migration and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, A2M-AS1 directly bound with miR-587 to promote BMP3 expression in LUAD cells. Low expression of BMP3 was found in LUAD tissues and cells and was closely correlated with poor prognosis in LUAD patients. BMP3 deficiency reserved the inhibitory influence of A2M-AS1 overexpression on LUAD cell behaviors. Overall, A2M-AS1 inhibits cell growth and aggressiveness via regulating the miR-587/BMP3 axis in LUAD.
Collapse
Affiliation(s)
- Hongfei Guo
- School of Basic Medical Sciences, 271667Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Oncology, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Chunlei Peng
- Department of Oncology, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qinghua Mao
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Biao Shen
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Haimin Lu
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, North Hospital, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Aimin Yang
- Department of Thoracic Surgery, South Hospital, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yupeng Liu
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| |
Collapse
|
6
|
Wang W, Xie G, Ren Z, Xie T, Li J. Gene Selection for the Discrimination of Colorectal Cancer. Curr Mol Med 2019; 20:415-428. [PMID: 31746296 DOI: 10.2174/1566524019666191119105209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Cancer discrimination is a typical application of gene expression analysis using a microarray technique. However, microarray data suffer from the curse of dimensionality and usual imbalanced class distribution between the majority (tumor samples) and minority (normal samples) classes. Feature gene selection is necessary and important for cancer discrimination. OBJECTIVES To select feature genes for the discrimination of CRC. METHODS We improve the feature selection algorithm based on differential evolution, DEFSw by using RUSBoost classifier and weight accuracy instead of the common classifier and evaluation measure for selecting feature genes from imbalance data. We firstly extract differently expressed genes (DEGs) from the CRC dataset of the TCGA and then select the feature genes from the DEGs using the improved DEFSw algorithm. Finally, we validate the selected feature gene sets using independent datasets and retrieve the cancer related information for these genes based on text mining through the Coremine Medical online database. RESULTS We select out 16 single-gene feature sets for colorectal cancer discrimination and 19 single-gene feature sets only for colon cancer discrimination. CONCLUSIONS In summary, we find a series of high potential candidate biomarkers or signatures, which can discriminate either or both of colon cancer and rectal cancer with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wenhui Wang
- Network Information Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanglei Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhonglu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tingyan Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wen J, Liu X, Qi Y, Niu F, Niu Z, Geng W, Zou Z, Huang R, Wang J, Zou H. BMP3 suppresses colon tumorigenesis via ActRIIB/SMAD2-dependent and TAK1/JNK signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:428. [PMID: 31665064 PMCID: PMC6819484 DOI: 10.1186/s13046-019-1435-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Background BMP3 gene is often found hypermethylated and hence inactivated in several types of cancers including colorectal cancer (CRC), indicating that it has a suppressor role in carcinogenesis. Though BMP3 is a reliable biomarker for screening CRC, the molecular mechanism of BMP3 in carcinogenesis remains largely unknown. Methods The expression level of BMP3 was examined by immunohistochemistry staining and western blot. Methylation-specific PCR (MSP) and real-time quantitative MSP were used to test the hypermethylation status of BMP3 gene. Analyses of BMP3 function in colon cancer cell proliferation, migration, invasion, and apoptosis were performed using HCT116 and KM12 cells. BMP3 was further knocked down or overexpressed in CRC cells, and the effects on cell growth of xenograft tumors in nude mice were assessed. Co-immunoprecipitation and immunofluorescence staining were used to analyze the association between BMP3 and BMPR2 or BMP3 and ActRIIB. Microarray analysis was performed to identify most differentially expressed genes and pathways regulated by BMP3. The BMP3-regulated SMAD2-dependent signaling pathway and TAK1/JNK signal axes were further investigated by quantitative PCR and western blot. Results BMP3 gene was hypermethylated and its expression was downregulated in both CRC tissues and cell lines. Expressing exogenous BMP3 in HCT116 inhibited cell growth, migration, and invasion and increased rate of apoptosis both in vitro and in vivo. However, shRNA-mediated attenuation of endogenous BMP3 in KM12 reversed such inhibitory and apoptotic effects. Furthermore, BMP3 could bind to ActRIIB, an activin type II receptor at the cellular membrane, thereby activating SMAD2-dependent pathway and TAK1/JNK signal axes to regulate downstream targets including caspase-7, p21, and SMAD4 that play crucial roles in cell cycle control and apoptosis. Conclusions Our study reveals a previously unknown mechanism of BMP3 tumor suppression in CRC and provides a rationale for future investigation of BMP3 as a potential target for the development of novel therapeutic agents to fight CRC.
Collapse
Affiliation(s)
- Jialing Wen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianglin Liu
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Yan Qi
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Feng Niu
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Zhitong Niu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Geng
- Department of pathology, Xiaolan Hospital, Southern Medical University, Zhongshan, Guangdong, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Renli Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Zhao Y, Cai LL, Wang HL, Shi XJ, Ye HM, Song P, Huang BQ, Tzeng CM. 1,25-Dihydroxyvitamin D 3 affects gastric cancer progression by repressing BMP3 promoter methylation. Onco Targets Ther 2019; 12:2343-2353. [PMID: 30992671 PMCID: PMC6445188 DOI: 10.2147/ott.s195642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin D3 has been known to have an anticancer effect, but the mechanisms underlying this is poorly explored. The present study aimed to investigate the antitumor role of vitamin D3 on gastric cancer and mechanisms. Methods The Roche Elecsys platform was applied in retrospective studies to detect the role of 25-hydroxylvitamin D3 in adenocarcinoma and colony formation assay was conducted to verify the effect of 1, 25-dihydroxyvitamin D3 on the proliferation of gastric cancer cells. After the identification of hypermethylation of BMP3 CpG islands by bisulfite genomic sequencing (BGS), we further investigated the relationship of BMP3 expression and gastric carcinogenesis by Western blot analysis and gel electrophoresis mobility shift assay (EMSA). Results Here we show that low concentration of 1, 25-dihydroxyvitamin D3 links to can-cerization and significantly inhibits proliferation of undifferentiated gastric cancer cell lines SGC-7901 and BGC-823. BMP3 promoter hypermethylation was highly correlated with gastric tumor. Moreover, BMP3 expression was regulated by its promoter methylation in gastric cells. The further exploration of the relationship between 1, 25-dihydroxyvitamin D3 and BMP3 by EMSA results that 1, 25-dihydroxyvitamin D3 stimulates BMP3 expression by the inhibition of BMP3 promoter methylation in gastric tumor cells. Conclusion In combination with the data from clinical research, bioinformatics analysis and experimental verification, we propose that 1, 25-hydroxylvitamin D3 affects gastric cancer progression by repressing BMP3 promoter methylation.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China, .,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hui-Ling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| | - Xiao-Juan Shi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| | - Hui-Ming Ye
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen 361004, People's Republic of China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Bao-Qi Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| |
Collapse
|
9
|
Liu R, Su X, Long Y, Zhou D, Zhang X, Ye Z, Ma J, Tang T, Wang F, He C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:45-57. [PMID: 31097151 DOI: 10.1016/j.mrrev.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) arises from accumulated genetic and epigenetic alterations, which provide the possibility to identify tumor-specific biomarkers by analyzing fecal DNA. Methylation status in human genes from tumor tissue is highlighted as promising biomarker in the early detection of CRC. A number of studies have documented altered methylation levels in DNA extracted from stool samples, but generated heterogeneous results. We performed a systematic review and quantitative assessment of existing studies to compare levels of DNA methylation in most frequently studied genes and their diagnostic value in CRC and its precursor, colorectal adenoma, with their counterparts in healthy subjects. Robust searches of the literature were performed in our study with explicit strategies and definite inclusion/exclusion criteria. Pooled data revealed that methylation levels of SFRP2, SFRP1, TFPI2, BMP3, NDRG4, SPG20, and BMP3 plus NDRG4 genes exceeded a sensitivity of 70% and a specificity of 80% for CRC detection. The DOR of the seven candidate biomarkers ranged from 19.80 to 334.33, indicating a good diagnostic power in discriminating cancer from normal tissues. The AUC range was from 0.88 to 0.95, indicating a good or very good discriminatory performance. When test results for BMP3 and NDRG4 were combined, the DOR of CRC detection was 98.36, which was higher than that for BMP3 and NDRG4 separately. As for adenoma detection, the DOR of methylated NDRG4 is higher than that for CRC (CRC vs. adenoma: 54.86 vs. 57.22). Both the sensitivity and specificity of NDRG4 for adenoma detection exceeded 70%. These findings demonstrate the eligibility and feasibility of DNA methylation as a minimally invasive biomarker in feces in the diagnosis of CRC and adenoma. The use of DNA from human stools has the potential to be readily applicable to detect aberrant DNA methylation levels among many subjects for CRC early screening.
Collapse
Affiliation(s)
- Rongbin Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Head and Neck, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Yakang Long
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dalei Zhou
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zulu Ye
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Caiyun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
10
|
LIU LL, QI XM, ZOU BJ, SONG QX, ZHOU GH. Quantitative Detection of Gene Methylated Level of Stool Samples Based on Invader Assay Coupled with Real-time Polymerase Chain Reaction and Its Application in Non-invasive Screening of Colorectal Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
The expression of embryonic liver development genes in hepatitis C induced cirrhosis and hepatocellular carcinoma. Cancers (Basel) 2013; 4:945-68. [PMID: 23667740 PMCID: PMC3650861 DOI: 10.3390/cancers4030945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.
Collapse
|
12
|
Kisiel JB, Li J, Zou H, Oseini AM, Strauss BB, Gulaid KH, Moser CD, Aderca I, Ahlquist DA, Roberts LR, Shire AM. Methylated Bone Morphogenetic Protein 3 (BMP3) Gene: Evaluation of Tumor Suppressor Function and Biomarker Potential in Biliary Cancer. JOURNAL OF MOLECULAR BIOMARKERS & DIAGNOSIS 2013; 4:1000145. [PMID: 25077038 PMCID: PMC4112127 DOI: 10.4172/2155-9929.1000145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although cholangiocarcinoma (CC) is an uncommon and highly lethal malignancy, early detection enables the application of potentially curative therapies and improves survival. Consequently, tools to improve the early diagnosis of CC are urgently needed. During a screen for genes epigenetically suppressed by methylation in CC that might serve as methylation markers for CC, we found that the BMP3 gene is methylated in CC cell lines, but the potential diagnostic value and the function of BMP3 in CC are unknown. METHODS We aimed to quantitatively assess BMP3 methylation in resected CC tumor specimens using methylation specific PCR and evaluate the tumor suppressor role of BMP3 in biliary cancer cell lines in comparison to an immortalized normal cholangiocyte cell line. Expression of BMP3 was quantified by mRNA levels before and after treatment with 5-Aza-2'-deoxycytidine and trichostatin A. After transfection with a BMP3-containing plasmid, cell viability was measured using the bromodeoxyuridine incorporation assay and apoptosis quantified by caspase assay. RESULTS In primary CC tumor tissue specimens significantly more methylated BMP3 copies were found when compared to matched benign bile duct epithelium from the same patient, with high specificity. BMP3 expression was absent in cell lines with BMP3 methylation; this suppression of BMP3 expression was reversed by treatment with a DNA demethylating agent and histone de-acetylase inhibitor. Transfection of a BMP3-expressing construct into a BMP3-negative biliary cancer cell line restored BMP3 mRNA expression and reduced cell proliferation and cell viability while increasing the rate of apoptosis. CONCLUSION These findings strongly support a tumor suppressor role for BMP3 in CC and suggest that BMP3 methylation may be a new biomarker for early detection of CCs. of the peptidome are also involved.
Collapse
Affiliation(s)
| | | | - Hongzhi Zou
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Abdul M Oseini
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Benjamin B Strauss
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Kadra H. Gulaid
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Ileana Aderca
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Abdirashid M Shire
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| |
Collapse
|
13
|
Kim YO, Hong IK, Eun YG, Nah SS, Lee S, Heo SH, Kim HK, Song HY, Kim HJ. Polymorphisms in bone morphogenetic protein 3 and the risk of papillary thyroid cancer. Oncol Lett 2012; 5:336-340. [PMID: 23255945 DOI: 10.3892/ol.2012.962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/29/2012] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGFβ) superfamily with well-described functions in bone formation. Although disrupted BMP signaling in tumor development has been investigated, a genetic association for BMP3 in papillary thyroid cancer (PTC) has remained largely unexplored. In this study, we investigated whether BMP3 single nucleotide polymorphisms (SNPs) are associated with the development of PTC and its clinicopathological features. A total of 103 PTC patients and 324 control subjects were enrolled. One promoter SNP (rs13138132; -1919C/A) and one missense mutation (rs3733549; Arg192Gln) in BMP3 were genotyped by direct sequencing. SNPStats, SNPAnalyzer, Helixtree and Haploview version 4.2 were used to evaluate the genetic data. Multiple logistic regression models were used to calculate odds ratios (ORs), 95% confidence intervals (CIs) and P-values. The missense SNP (rs3733549) was weakly associated with the development of PTC in a codominant model (AA vs. GG; P=0.017) and a recessive model (AA vs. GG/GA; P=0.023). Additionally, in an analysis according to clinicopathological features, rs13138132 was significantly associated with extra-thyroidal invasion in a codominant model (CA vs. CC; P=0.006) and a dominant model (CA/AA vs. CC; P=0.0023). We also identified that the frequency of the A allele in the promoter SNP (rs13138132) was increased in PTC patients with extrathyroidal invasion (P=0.004). Our data suggest that rs3733549 in BMP3 is associated with the development of PTC and that the A allele of rs13138932 in BMP3 is a risk factor for extrathyroidal invasion.
Collapse
Affiliation(s)
- Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Barisone GA, Ngo T, Tran M, Cortes D, Shahi MH, Nguyen TV, Perez-Lanza D, Matayasuwan W, Díaz E. Role of MXD3 in proliferation of DAOY human medulloblastoma cells. PLoS One 2012; 7:e38508. [PMID: 22808009 PMCID: PMC3393725 DOI: 10.1371/journal.pone.0038508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
A subset of medulloblastomas, the most common brain tumor in children, is hypothesized to originate from granule neuron precursors (GNPs) in which the sonic hedgehog (SHH) pathway is over-activated. MXD3, a basic helix-look-helix zipper transcription factor of the MAD family, has been reported to be upregulated during postnatal cerebellar development and to promote GNP proliferation and MYCN expression. Mxd3 is upregulated in mouse models of medulloblastoma as well as in human medulloblastomas. Therefore, we hypothesize that MXD3 plays a role in the cellular events that lead to medulloblastoma biogenesis. In agreement with its proliferative role in GNPs, MXD3 knock-down in DAOY cells resulted in decreased proliferation. Sustained overexpression of MXD3 resulted in decreased cell numbers due to increased apoptosis and cell cycle arrest. Structure-function analysis revealed that the Sin3 interacting domain, the basic domain, and binding to E-boxes are essential for this activity. Microarray-based expression analysis indicated up-regulation of 84 genes and down-regulation of 47 genes. Potential direct MXD3 target genes were identified by ChIP-chip. Our results suggest that MXD3 is necessary for DAOY medulloblastoma cell proliferation. However, increased level and/or duration of MXD3 expression ultimately reduces cell numbers via increased cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Gustavo A. Barisone
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Tin Ngo
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Martin Tran
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Daniel Cortes
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Mehdi H. Shahi
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Tuong-Vi Nguyen
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Daniel Perez-Lanza
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Wanna Matayasuwan
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Elva Díaz
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li XQ, Guo YY, De W. DNA methylation and microRNAs in cancer. World J Gastroenterol 2012; 18:882-8. [PMID: 22408346 PMCID: PMC3297046 DOI: 10.3748/wjg.v18.i9.882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a type of epigenetic modification in the human genome, which means that gene expression is regulated without altering the DNA sequence. Methylation and the relationship between methylation and cancer have been the focus of molecular biology researches. Methylation represses gene expression and can influence embryogenesis and tumorigenesis. In different tissues and at different stages of life, the level of methylation of DNA varies, implying a fundamental but distinct role for methylation. When genes are repressed by abnormal methylation, the resulting effects can include instability of that gene and inactivation of a tumor suppressor gene. MicroRNAs have some aspects in common with this regulation of gene expression. Here we reviewed the influence of gene methylation on cancer and analyzed the methods used to profile methylation. We also assessed the correlation between methylation and other epigenetic modifications and microRNAs. About 55 845 research papers have been published about methylation, and one-fifth of these are about the appearance of methylation in cancer. We conclude that methylation does play a role in some cancer types.
Collapse
|
16
|
Kisiel JB, Yab TC, Taylor WR, Chari ST, Petersen GM, Mahoney DW, Ahlquist DA. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer 2011. [PMID: 22083596 DOI: 10.1002/cncr/26558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic cancer (PanC) presents at late stage with high mortality. Effective early detection methods are needed. Aberrantly methylated genes are unexplored as markers for noninvasive detection by stool testing. The authors aimed to select discriminant methylated genes and to assess accuracy of these and mutant KRAS in stool to detect PanC. METHODS Nine target genes were assayed by real-time methylation-specific polymerase chain reaction (MSP) in bisulfite-treated DNA from microdissected frozen specimens of 24 PanC cases and 30 normal colon controls. Archived stools from 58 PanC cases and 65 controls matched on sex, age, and smoking were analyzed. Target genes from fecal supernatants were enriched by hybrid capture, bisulfite-treated, and assayed by MSP. KRAS mutations were assayed using the QuARTS technique. RESULTS Areas under the receiver operating characteristics curves (AUCs) for tissue BMP3, NDRG4, EYA4, UCHL1, MDFI, Vimentin, CNTNAP2, SFRP2, and TFPI2 were 0.90, 0.79, 0.78, 0.78, 0.77, 0.77, 0.69, 0.67, and 0.66, respectively. The top 4 markers and mutant KRAS were evaluated in stool. BMP3 was the most discriminant methylation marker in stool. At 90% specificity, methylated BMP3 alone detected 51% of PanCs, mutant KRAS detected 50%, and combination detected 67%. AUCs for methylated BMP3, mutant KRAS, and combination in stool were 0.73, 0.75, and 0.85, respectively. CONCLUSIONS This study demonstrates that stool assay of a methylated gene marker can detect PanC. Among candidate methylated markers discriminant in tissue, BMP3 alone performed well in stool. Combining methylated BMP3 and mutant KRAS increased stool detection over either marker alone.
Collapse
Affiliation(s)
- John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kisiel JB, Yab TC, Taylor WR, Chari ST, Petersen GM, Mahoney DW, Ahlquist DA. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer 2011; 118:2623-31. [PMID: 22083596 DOI: 10.1002/cncr.26558] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/10/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pancreatic cancer (PanC) presents at late stage with high mortality. Effective early detection methods are needed. Aberrantly methylated genes are unexplored as markers for noninvasive detection by stool testing. The authors aimed to select discriminant methylated genes and to assess accuracy of these and mutant KRAS in stool to detect PanC. METHODS Nine target genes were assayed by real-time methylation-specific polymerase chain reaction (MSP) in bisulfite-treated DNA from microdissected frozen specimens of 24 PanC cases and 30 normal colon controls. Archived stools from 58 PanC cases and 65 controls matched on sex, age, and smoking were analyzed. Target genes from fecal supernatants were enriched by hybrid capture, bisulfite-treated, and assayed by MSP. KRAS mutations were assayed using the QuARTS technique. RESULTS Areas under the receiver operating characteristics curves (AUCs) for tissue BMP3, NDRG4, EYA4, UCHL1, MDFI, Vimentin, CNTNAP2, SFRP2, and TFPI2 were 0.90, 0.79, 0.78, 0.78, 0.77, 0.77, 0.69, 0.67, and 0.66, respectively. The top 4 markers and mutant KRAS were evaluated in stool. BMP3 was the most discriminant methylation marker in stool. At 90% specificity, methylated BMP3 alone detected 51% of PanCs, mutant KRAS detected 50%, and combination detected 67%. AUCs for methylated BMP3, mutant KRAS, and combination in stool were 0.73, 0.75, and 0.85, respectively. CONCLUSIONS This study demonstrates that stool assay of a methylated gene marker can detect PanC. Among candidate methylated markers discriminant in tissue, BMP3 alone performed well in stool. Combining methylated BMP3 and mutant KRAS increased stool detection over either marker alone.
Collapse
Affiliation(s)
- John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|