1
|
Kasprzak A, Geltz A. The State-of-the-Art Mechanisms and Antitumor Effects of Somatostatin in Colorectal Cancer: A Review. Biomedicines 2024; 12:578. [PMID: 38540191 PMCID: PMC10968376 DOI: 10.3390/biomedicines12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 01/03/2025] Open
Abstract
Somatostatin, a somatotropin release inhibiting factor (SST, SRIF), is a widely distributed multifunctional cyclic peptide and acts through a transmembrane G protein-coupled receptor (SST1-SST5). Over the past decades, research has begun to reveal the molecular mechanisms underlying the anticancer activity of this hormonal peptide. Among gastrointestinal tract (GIT) tumors, direct and indirect antitumor effects of SST have been documented best in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and less well in non-endocrine cancers, including sporadic colorectal cancer (CRC). In the latter, the signaling pathways involved in the antitumor function of SST are primarily MAPK/ERK/AKT and Wnt/β-catenin. Direct (involving the MAPK pathway) and indirect (VEGF production) antiangiogenic effects of SST in CRC have also been described. The anti-inflammatory role of SST in CRC is emphasized, but detailed molecular mechanisms are still being explored. The role of SST in tumor genome/tumor microenvironment (TME)/host's gut microbiome interactions is only partially known. The results of SST analogues (SSAs)' treatment of sporadic CRC in monotherapy in vivo are not spectacular. The current review aims to present the state-of-the-art mechanisms and antitumor activity of endogenous SST and its synthetic analogues in CRC, with particular emphasis on sporadic CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland;
| | | |
Collapse
|
2
|
Abruscato G, Chiarelli R, Lazzara V, Punginelli D, Sugár S, Mauro M, Librizzi M, Di Stefano V, Arizza V, Vizzini A, Vazzana M, Luparello C. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. BIOLOGY 2023; 12:biology12040616. [PMID: 37106816 PMCID: PMC10135731 DOI: 10.3390/biology12040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 μg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.
Collapse
Affiliation(s)
- Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Diletta Punginelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
3
|
Is There a Place for Somatostatin Analogues for the Systemic Treatment of Hepatocellular Carcinoma in the Immunotherapy Era? LIVERS 2022. [DOI: 10.3390/livers2040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) have a very limited survival rate even after the recent inclusion of kinase inhibitors or immune checkpoint inhibitors in the therapeutic armamentarium. A significant problem with the current proposed therapies is the considerable cost of treatment that may be a serious obstacle in low- and middle-income countries. Implementation of somatostatin analogues (SSAs) has the potential to overcome this obstacle, but due to some negative studies their extensive evaluation came to a halt. However, experimental evidence, both in vitro and in vivo, has revealed various mechanisms of the anti-tumor effects of these analogues, including inhibition of cancer cell proliferation and angiogenesis and induction of apoptosis. Favorable indirect effects such as inhibition of liver inflammation and fibrosis and influence on macrophage-mediated innate immunity have also been noted and are presented in this review. Furthermore, the clinical application of SSAs is both presented and compared with clinical trials of kinase and immune checkpoint inhibitors (ICIs). No direct trials have been performed to compare survival in the same cohort of patients, but the cost of treatment with SSAs is a fraction compared to the other modalities and with significantly less serious side effects. As in immunotherapy, patients with viral HCC (excluding alcoholics), as well as Barcelona stage B or C and Child A patients, are the best candidates, since they usually have a survival prospect of at least 6 months, necessary for optimum results. Reasons for treatment failures are also discussed and further research is proposed.
Collapse
|
4
|
Antitumoral and Anti-inflammatory Roles of Somatostatin and Its Analogs in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2021; 2021:1840069. [PMID: 34873567 PMCID: PMC8643256 DOI: 10.1155/2021/1840069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and affects about 8% of cirrhotic patients, with a recurrence rate of over 50%. There are numerous therapies available for the treatment of HCC, depending on cancer staging and condition of the patient. The complexity of the treatment is also justified by the unique pathogenesis of HCC that involves intricate processes such as chronic inflammation, fibrosis, and multiple molecular carcinogenesis events. During the last three decades, multiple in vivo and in vitro experiments have used somatostatin and its analogs (SSAs) to reduce the proliferative and metastatic potential of hepatoma cells by inducing their apoptosis and reducing angiogenesis and the inflammatory component of HCC. Most experiments have proven successful, revealing several different pathways and mechanisms corresponding to the aforementioned functions. Moreover, a correlation between specific effects and expression of somatostatin receptors (SSTRs) was observed in the studied cells. Clinical trials have tested either somatostatin or an analog, alone or in combination with other drugs, to explore the potential effects on HCC patients, in various stages of the disease. While the majority of these clinical trials exhibited minor to moderate success, some other studies were inconclusive or even reported negative outcomes. A complete evaluation of the efficacy of somatostatin and SSAs is still the matter of intense debate, and, if deemed useful, these substances may play a beneficial role in the management of HCC patients.
Collapse
|
5
|
Aziz NM, Ragy MM, Ahmed SM. Somatostatin analogue, Octreotide, improves restraint stress-induced liver injury by ameliorating oxidative stress, inflammatory response, and activation of hepatic stellate cells. Cell Stress Chaperones 2018; 23:1237-1245. [PMID: 30109542 PMCID: PMC6237684 DOI: 10.1007/s12192-018-0929-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the effect of somatostatin (SST) analogue, Octreotide, on some features of liver injury induced by immobilization stress (IS) in adult male albino rats. Eighteen adult male albino rats were randomly divided into three equal groups: control, IS, and Octreotide-treated stressed groups. Octreotide (40 μg/kg body weight, subcutaneously) was administrated twice daily for 8 days during the exposure to IS. Octreotide was found to reduce the IS significantly and induce elevations in the plasma level of corticosterone, liver transaminases, and tumor necrosis factor α (TNF-α) as compared with IS group. Furthermore, Octreotide administration has significantly elevated the decline in the total antioxidant capacities (TAC) and lowered the elevated malondialdehyde (MDA) levels observed with IS in the hepatic tissue. Additionally, Octreotide treatment provided protection against the histopathological changes in the stressed liver in the form of significant reduction in the mean number of degenerated hepatocytes, the area % of collagen fibers, and glial fibrillary acid protein (GFAP) immunostaining with a significant increase in the mean number of normal hepatocytes. In conclusion, stressed rats showed disturbed liver functions and its oxidant-antioxidant status with highly expression hepatic stellate cells (HSCs), which were all improved by Octreotide administration, SST analogue.
Collapse
Affiliation(s)
- Neven Makram Aziz
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Deraya University, New Minia, Egypt
| | - Merhan Mamdouh Ragy
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt.
| | - Sabreen Mahmoud Ahmed
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Kaemmerer D, Schindler R, Mußbach F, Dahmen U, Altendorf-Hofmann A, Dirsch O, Sänger J, Schulz S, Lupp A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets. BMC Cancer 2017; 17:896. [PMID: 29282035 PMCID: PMC5745780 DOI: 10.1186/s12885-017-3911-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular (HCC) and cholangiocellular carcinomas (CCC) display an exceptionally poor prognosis. Especially for advanced disease no efficient standard therapy is currently available. Recently, somatostatin analogs have been evaluated for the treatment of HCC, however, with contradictory results. Besides, for both malignancies the chemokine receptor CXCR4 has been discussed as a possible new target structure. Methods Expression of somatostatin receptor (SSTR) subtypes 1, 2A, 3, 4, and 5, and of CXCR4 was evaluated in a total of 71 HCCs and 27 CCCs by immunohistochemistry using well-characterized novel monoclonal antibodies. Results In HCC tumor cells, frequency and intensity of expression of SSTRs and CXCR4 were only low. CXCR4 was present in about 40% of the HCCs, although at a low intensity. SSTR5, SSTR2, and SSTR3 were detected in about 15%, 8%, and 5% of the HCC tumors, respectively. SSTR and CXCR4 expression was much higher in CCC than in HCC. CXCR4 and SSTR1 were present in 60% and 67% of the CCC samples, respectively, followed by SSTR2 and SSTR5, which were detected in 30% and 11% of the tumors, respectively. Most notably, CXCR4 was intensely expressed on the tumor capillaries in about 50% of the HCCs and CCCs. CXCR4 expression on tumor vessels was associated with poor patient outcomes. Conclusions CCC, but not HCC, may be suitable for SSTR-based treatments. Because of the predominant expression of SSTR1, pan-somatostatin analogs should be preferred. In both HCC and CCC, indirect targeting of tumors via the CXCR4-positive tumor capillaries may represent a promising additional therapeutic strategy. Electronic supplementary material The online version of this article (10.1186/s12885-017-3911-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Robin Schindler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, D-07747, Jena, Germany
| | - Franziska Mußbach
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | | | - Olaf Dirsch
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Jörg Sänger
- Institute of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, D-07747, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, D-07747, Jena, Germany.
| |
Collapse
|
7
|
Andrade AF, Borges KS, Suazo VK, Geron L, Corrêa CAP, Castro-Gamero AM, de Vasconcelos EJR, de Oliveira RS, Neder L, Yunes JA, Dos Santos Aguiar S, Scrideli CA, Tone LG. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma. Invest New Drugs 2016; 35:26-36. [PMID: 27785591 DOI: 10.1007/s10637-016-0401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common solid tumor among pediatric patients and corresponds to 20 % of all pediatric intracranial tumors in this age group. Its treatment currently involves significant side effects. Epigenetic changes such as DNA methylation may contribute to its development and progression. DNA methyltransferase (DNMT) inhibitors have shown promising anticancer effects. The agent Zebularine acts as an inhibitor of DNA methylation and shows low toxicity and high efficacy, being a promising adjuvant agent for anti-cancer chemotherapy. Several studies have reported its effects on different types of tumors; however, there are no studies reporting its effects on MB. We analyzed its potential anticancer effects in four pediatric MB cell lines. The treatment inhibited proliferation and clonogenicity, increased the apoptosis rate and the number of cells in the S phase (p < 0.05), as well as the expression of p53, p21, and Bax, and decreased cyclin A, Survivin and Bcl-2 proteins. In addition, the combination of zebularine with the chemotherapeutic agents vincristine and cisplatin resulted in synergism and antagonism, respectively. Zebularine also modulated the activation of the SHH pathway, reducing SMO and GLI1 levels and one of its targets, PTCH1, without changing SUFU levels. A microarray analysis revealed different pathways modulated by the drug, including the Toll-Like Receptor pathway and high levels of the BATF2 gene. The low expression of this gene was associated with a worse prognosis in MB. Taken together, these data suggest that Zebularine may be a potential drug for further in vivo studies of MB treatment.
Collapse
Affiliation(s)
- Augusto Faria Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Veridiana Kiill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, USP, São Paulo, Brazil
| | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.,Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
8
|
Octreotide in combination with AT-101 induces cytotoxicity and apoptosis through up-regulation of somatostatin receptors 2 and 5 in DU-145 prostate cancer cells. Tumour Biol 2015; 37:4939-44. [PMID: 26531719 DOI: 10.1007/s13277-015-4331-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer among males. Although survival rate of early-stage PCa is high, treatment options are very limited for recurrent disease. In this study, the possible synergistic cytotoxic and apoptotic effect of octreotide in combination with AT-101 was investigated in DU-145 hormone and drug refractory prostate cancer cell line. To enlighten the action mechanisms of the combination treatment, expression levels of somatostatin receptors 2 and 5 (SSTR2 and SSTR5) were also investigated. Cell viability was measured by XTT assay. Apoptosis was assessed through DNA fragmentation analysis and caspase 3/7 assay. mRNA and protein levels of SSTR2 and SSTR5 were evaluated by qRT-PCR and western blot analysis, respectively. Octreotide in combination with AT-101 inhibited cell viability and induced apoptosis synergistically in DU-145 cells as compared to any agent alone. Combination treatment increased both SSTR2 and SSTR5 mRNA and protein levels in DU-145 cells. The data suggest that this combination therapy may be a good candidate for patients with advanced metastatic PCa do not respond to androgen deprivation.
Collapse
|
9
|
Pivonello C, De Martino MC, Negri M, Cuomo G, Cariati F, Izzo F, Colao A, Pivonello R. The GH-IGF-SST system in hepatocellular carcinoma: biological and molecular pathogenetic mechanisms and therapeutic targets. Infect Agent Cancer 2014; 9:27. [PMID: 25225571 PMCID: PMC4164328 DOI: 10.1186/1750-9378-9-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide. Different signalling pathways have been identified to be implicated in the pathogenesis of HCC; among these, GH, IGF and somatostatin (SST) pathways have emerged as some of the major pathways implicated in the development of HCC. Physiologically, GH-IGF-SST system plays a crucial role in liver growth and development since GH induces IGF1 and IGF2 secretion and the expression of their receptors, involved in hepatocytes cell proliferation, differentiation and metabolism. On the other hand, somatostatin receptors (SSTRs) are exclusively present on the biliary tract. Importantly, the GH-IGF-SST system components have been indicated as regulators of hepatocarcinogenesis. Reduction of GH binding affinity to GH receptor, decreased serum IGF1 and increased serum IGF2 production, overexpression of IGF1 receptor, loss of function of IGF2 receptor and appearance of SSTRs are frequently observed in human HCC. In particular, recently, many studies have evaluated the correlation between increased levels of IGF1 receptors and liver diseases and the oncogenic role of IGF2 and its involvement in angiogenesis, migration and, consequently, in tumour progression. SST directly or indirectly influences tumour growth and development through the inhibition of cell proliferation and secretion and induction of apoptosis, even though SST role in hepatocarcinogenesis is still opened to argument. This review addresses the present evidences suggesting a role of the GH-IGF-SST system in the development and progression of HCC, and describes the therapeutic perspectives, based on the targeting of GH-IGF-SST system, which have been hypothesised and experimented in HCC.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | | | - Federica Cariati
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Francesco Izzo
- National Cancer Institute G Pascale Foundation, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| |
Collapse
|
10
|
Ayiomamitis GD, Notas G, Zaravinos A, Drygiannakis I, Georgiadou M, Sfakianaki O, Mastrodimou N, Thermos K, Kouroumalis E. Effects of octreotide and insulin on colon cancer cellular proliferation and correlation with hTERT activity. Oncoscience 2014; 1:457-67. [PMID: 25594044 PMCID: PMC4284627 DOI: 10.18632/oncoscience.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/28/2014] [Indexed: 12/15/2022] Open
Abstract
Peptide hormone somatostatin and its receptors have a wide range of physiological functions and play a role in the treatment of numerous human diseases, including colorectal cancer. Octreotide, a synthetic somatostatin-analog peptide, inhibits growth of colonic cancer cells primarily by binding to G-protein coupled receptors and elicits cellular responses through second-messenger systems. Insulin also initiates mitogenic signals in certain cell types. The objective of the present study was to explore the effects of octreotide with or without insulin treatment, on Caco-2 and HT-29 human colon-cancer cell proliferation and to correlate their effects with the activation of telomerase reverse transcriptase (hTERT). The involvement of protein tyrosine phosphatases in the regulation of the anti-proliferative effect of octreotide was also evaluated. Sodium orthovanadate was used to reverse the anti- proliferative effect of octreotide. Telomerase activity was determined for each time point under octreotide and/or insulin treatment. Elevated expression of sst1, sst2 and sst5 was confirmed in both cell lines by RT-PCR. Immunocytochemistry detected sst1, sst2A, sst2B, sst3, sst4 and sst5 protein expression in the membranes of both cell lines. Octreotide inhibited the proliferation of Caco-2 and HT-29 cells in a time and dose-dependent manner. Insulin exerted proliferative effects in Caco-2 cells and octreotide reversed its effect in both cell lines. Sodium orthovanadate suppressed the anti-proliferative effect of octreotide both in Caco-2 and HT-29 cells. Telomerase activity was significantly reduced when Caco-2 cells were exposed to octreotide, under serum-free cultured medium. On the other hand, telomerase attenuation after octreotide treatment could not counteract the actions of insulin on both cells. Our data indicate that the use of octreotide could provide a possible therapeutic approach to the management of certain patients who suffer from colon cancer.
Collapse
Affiliation(s)
- Georgios D Ayiomamitis
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece ; 2nd Department of Surgery, Tzaneion General Hospital, Piraeus, Greece
| | - George Notas
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece ; Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos Zaravinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion, Greece ; Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Georgiadou
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ourania Sfakianaki
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece
| | - Niki Mastrodimou
- Laboratory of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kyriaki Thermos
- Laboratory of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology, School of Medicine, University of Crete, Heraklion, Greece ; Department of Gastroenterology and Hepatology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
11
|
Synergistic antitumor activities of docetaxel and octreotide associated with apoptotic-upregulation in castration-resistant prostate cancer. PLoS One 2014; 9:e91817. [PMID: 24632829 PMCID: PMC3954761 DOI: 10.1371/journal.pone.0091817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/13/2014] [Indexed: 12/17/2022] Open
Abstract
Androgen deprivation therapy has become the fist-line treatment of metastatic prostate cancer; however, progression to castrate resistance disease occurs in the majority of patients. Thus, there is an urgent need for improvements in therapy for castration-resistant prostate cancer. The aims of the present study were to determine the efficacy somatostatin analogue octreotide (OCT) combined with a low dose of docetaxel (DTX) using castration resistant prostate cancer cells and to investigate the involved molecular mechanisms in vitro. The anti-proliferative and synergism potential effects were determined by MTT assay. Induction of apoptosis was analyzed employing annexing V and propidium iodide staining and flow cytometry. VEGFA, CASP9, CASP3 and ABCB1 gene expression was evaluated by RT-PCR and Q-RT-PCR analysis. OCT in combination with DTX treatments on DU145 cell migration was also evaluated. Investigation revealed that combined administration of DTX and OCT had significant, synergistically greater cytotoxicity than DTX or OCT treatment alone. The combination of the two drugs caused a more marked increase in apoptosis and resulted in greater suppression of invasive potential than either individual agent. There was obvious increase in caspase 3 expression in the OCT alone and two-drug combined treatment groups, however, VEGFA expression was markedly suppressed in them. These results support the conclusion that somatostatin analogues combined with docetaxel may enhance the chemotherapy efficacies through multiple mechanisms in castration-resistant PCa cell line. This work provides a preclinical rationale for the therapeutic strategies to improve the treatment in castrate resistance disease.
Collapse
|
12
|
ZHANG LILI, YU SU, DUAN ZHIJUN, WANG QIUMING, TIAN GE, TIAN YAN, ZHAO WEI, WANG HUI, ZHANG CUILING, GUO SHIBIN, LIU QIGUI, HE GAOHONG, BIAN TENGFEI, CHANG JIUYANG, JIN XUE, CUI DONGSHENG. Treatment of liver cancer in mice by the intratumoral injection of an octreotide-based temperature-sensitive gel. Int J Mol Med 2013; 33:117-27. [DOI: 10.3892/ijmm.2013.1542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
|
13
|
Zhang XH, Zhang N, Lu JM, Kong QZ, Zhao YF. Tetrazolium violet induced apoptosis and cell cycle arrest in human lung cancer a549 cells. Biomol Ther (Seoul) 2013; 20:177-82. [PMID: 24116292 PMCID: PMC3792215 DOI: 10.4062/biomolther.2012.20.2.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/11/2012] [Accepted: 03/12/2012] [Indexed: 01/24/2023] Open
Abstract
Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at 5-15 μM. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- School of Life Science, Shandong University, Jinan 250100 ; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008
| | | | | | | | | |
Collapse
|
14
|
Differential molecular mechanism of docetaxel-octreotide combined treatment according to the docetaxel-resistance status in PC3 prostate cancer cells. Anticancer Drugs 2013; 24:120-30. [PMID: 22990129 DOI: 10.1097/cad.0b013e328358d1dc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To examine the effect and the molecular mechanisms of the combined treatment of the somatostatin (SST) analogue octreotide with docetaxel: analysis of proliferation, apoptosis and migration in the human prostate cancer cell line PC3, either sensitive (PC3wt) or made resistant to docetaxel (PC3R). We examined the effect of the two drugs individually or in combination on cell proliferation and migration by analysis of apoptosis and cell cycle proteins. The role of octreotide in modulating P-glycoprotein function was examined together with the modulation of SST receptors type 2 and 5 (SSTR2 and SSTR5). We observed an enhanced effect of docetaxel and octreotide given in combination or in sequence compared with either agent alone; this result was particularly evident when docetaxel was given before octreotide in PC3wt and when the two drugs were given together in PC3R cells. In contrast to lanreotide, our data indicate that octreotide does not act as a P-glycoprotein inhibitor in PC3R cells. A role of docetaxel and combined treatment in regulating SSTR2, SSTR5, proliferation and apoptosis gene expression is suggested as the possible mechanism for the enhanced effect observed. In addition, an evaluation of the effect of the combined treatment on cellular migration was examined, showing a moderate loss of invasive properties in PC3R cells. The present results confirm that SST analogues may be combined with docetaxel to increase the antitumour effect in patients with advanced prostate carcinoma.
Collapse
|
15
|
Nakamura K, Aizawa K, Nakabayashi K, Kato N, Yamauchi J, Hata K, Tanoue A. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS One 2013; 8:e54036. [PMID: 23320119 PMCID: PMC3540068 DOI: 10.1371/journal.pone.0054036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancers worldwide. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-(D)-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on hepatocellular carcinoma cell line HepG2. We demonstrate that zebularine exhibits antitumor activity on HepG2 cells by inhibiting cell proliferation and inducing apoptosis, however, it has little effect on DNA methylation in HepG2 cells. On the other hand, zebularine treatment downregulated CDK2 and the phosphorylation of retinoblastoma protein (Rb), and upregulated p21(WAF/CIP1) and p53. We also found that zebularine treatment upregulated the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). These results suggest that the p44/42 MAPK pathway plays a role in zebularine-induced cell-cycle arrest by regulating the activity of p21(WAF/CIP1) and Rb. Furthermore, although the proapoptotic protein Bax levels were not affected, the antiapoptotic protein Bcl-2 level was downregulated with zebularine treatment. In addition, the data in the present study indicate that inhibition of the double-stranded RNA-dependent protein kinase (PKR) is involved in inducing apoptosis with zebularine. These results suggest a novel mechanism of zebularine-induced cell growth arrest and apoptosis via a DNA methylation-independent pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Voumvouraki A, Notas G, Koulentaki M, Georgiadou M, Klironomos S, Kouroumalis E. Increased serum activin-A differentiates alcoholic from cirrhosis of other aetiologies. Eur J Clin Invest 2012; 42:815-22. [PMID: 22304651 DOI: 10.1111/j.1365-2362.2012.02647.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Activin-A is a molecule of the TGF superfamily, implicated in liver fibrosis, regeneration and stem cell differentiation. However, data on activins in liver diseases are few. We therefore studied serum levels of activin-A in chronic liver diseases. To identify the origin of activin-A, levels in the hepatic vein were also estimated. MATERIALS AND METHODS Nineteen controls and 162 patients participated in the study: 39 with hepatocellular carcinoma (HCC: 19 viral associated and 20 alcohol associated), 18 with chronic hepatitis C (CHC), 47 with primary biliary cirrhosis (26 PBC stage I-II and 21 stage IV), 22 with alcoholic cirrhosis (AC, hepatic vein blood available in 16), 20 with HCV cirrhosis (hepatic vein blood available in 18) and 16 patients with alcoholic fatty liver with mild to moderate fibrosis but no cirrhosis. RESULTS Activin-A levels were significantly increased (P < 0·001) in serum of patients with AC (median 673 pg/mL, range 449-3279), compared with either controls (149 pg/mL, 91-193) or patients with viral cirrhosis (189 pg/mL, 81-480), CHC (142 pg/mL, 65-559) PBC stage I-II (100 pg/mL, 59-597) and PBC stage IV (104 pg/mL, 81-579). Only patients with AC-associated HCC had significantly increased levels of activin-A (2403 pg/mL, 1561-7220 pg/mL). Activin-A serum levels could accurately discriminate AC from cirrhosis of other aetiologies and noncirrhotic alcoholic fatty liver with fibrosis. CONCLUSIONS Increased serum levels of activin-A only in patients with alcohol-related cirrhosis or HCC suggest a possible role of this molecule in the pathophysiology of AC. Further research is warranted to elucidate its role during the profibrotic process and its possible clinical applications.
Collapse
Affiliation(s)
- Argyro Voumvouraki
- University Hospital Department of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Jiang CP, Ding H, Shi DH, Wang YR, Li EG, Wu JH. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells. World J Gastroenterol 2012; 18:1753-64. [PMID: 22553399 PMCID: PMC3332288 DOI: 10.3748/wjg.v18.i15.1753] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/03/2011] [Accepted: 10/14/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells.
METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit.
RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i, loss of mitochondrial membrane potential, translocation of cytochrome c, and activation of caspase-9 and -3.
CONCLUSION: Tectorigenin induces apoptosis of HepG2 cells mainly via mitochondrial-mediated pathway, and produces a slight cytotoxicity to L02 cells.
Collapse
|
18
|
Yukawa H, Ishikawa S, Kawanishi T, Tamesada M, Tomi H. Direct Cytotoxicity of Lentinula edodes Mycelia Extract on Human Hepatocellular Carcinoma Cell Line. Biol Pharm Bull 2012; 35:1014-21. [DOI: 10.1248/bpb.b110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroshi Yukawa
- Department of New Product and Business Development, Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd
| | - Satoru Ishikawa
- Department of New Product and Business Development, Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd
| | - Takashi Kawanishi
- Department of New Product and Business Development, Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd
| | - Makoto Tamesada
- Department of New Product and Business Development, Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd
| | - Hironori Tomi
- Department of New Product and Business Development, Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd
| |
Collapse
|
19
|
Ferreira DMS, Castro RE, Machado MV, Evangelista T, Silvestre A, Costa A, Coutinho J, Carepa F, Cortez-Pinto H, Rodrigues CMP. Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 2011; 54:1788-98. [PMID: 21455726 DOI: 10.1007/s00125-011-2130-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/02/2011] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Non-alcoholic fatty liver disease (NAFLD) is associated with insulin resistance and characterised by different degrees of hepatic lesion. Its pathogenesis and correlation with apoptosis and insulin resistance in insulin target tissues remains incompletely understood. We investigated how insulin signalling, caspase activation and apoptosis correlate with different NAFLD stages in liver, muscle and visceral adipose tissues. METHODS Liver, muscle and adipose tissue biopsies from 26 morbidly obese patients undergoing bariatric surgery were grouped according to the Kleiner-Brunt scoring system into simple steatosis, and less severe and more severe non-alcoholic steatohepatitis (NASH). Apoptosis was assessed by DNA fragmentation, and caspase-2 and -3 activation. Insulin signalling and c-Jun NH(2)-terminal kinase (JNK) proteins were evaluated by western blot. RESULTS Caspase-3 and -2 activation, and DNA fragmentation were markedly increased in the liver of patients with severe NASH vs in that of those with simple steatosis (p < 0.01). Muscle tissue, and to a lesser extent the liver, had decreased tyrosine phosphorylated insulin receptor and insulin receptor substrate in patients with severe NASH, compared with those with simple steatosis (p < 0.01 muscle; p < 0.05 liver). Concomitantly, Akt phosphorylation decreased in muscle, liver and visceral adipose tissues in patients with severe NASH (at least p < 0.05). Finally, JNK phosphorylation was significantly increased in muscle (p < 0.01) and liver (p < 0.05) from NASH patients, compared with tissue from those with simple steatosis. CONCLUSIONS/INTERPRETATION Our results demonstrate a link between apoptosis, insulin resistance and different NAFLD stages, where JNK and caspase-2 may play a key regulatory role.
Collapse
Affiliation(s)
- D M S Ferreira
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Georgiadou M, Notas G, Xidakis C, Drygiannakis I, Sfakianaki O, Klironomos S, Valatas V, Kouroumalis E. TNF receptors in Kupffer cells. J Recept Signal Transduct Res 2011; 31:291-8. [DOI: 10.3109/10799893.2011.586354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|