1
|
Cotter TG, Charlton M. Nonalcoholic Steatohepatitis After Liver Transplantation. Liver Transpl 2020; 26:141-159. [PMID: 31610081 DOI: 10.1002/lt.25657] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Currently, nonalcoholic steatohepatitis (NASH) is the second leading indication for liver transplantation (LT), behind alcohol-related liver disease. After transplant, both recurrent and de novo nonalcoholic fatty liver disease are common; however, recurrence rates of NASH and advanced fibrosis are low. Identification of high-risk groups and optimizing treatment of metabolic comorbidities both before and after LT is paramount to maintaining a healthy allograft, especially with the additional consequences of longterm immunosuppression. In addition, NASH LT recipients are at an increased risk of cardiovascular events and malignancy, and their condition warrants a tailored approach to management. The optimal approach to NASH LT recipients including metabolic comorbidities management, tailored immunosuppression, the role of bariatric surgery, and nutritional and pharmacotherapy of NASH are discussed in this review. Overall, aggressive management of metabolic syndrome after LT via medical and surgical modalities and a minimalist approach to immunosuppression is advised.
Collapse
Affiliation(s)
- Thomas G Cotter
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, IL
| | - Michael Charlton
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, IL
| |
Collapse
|
2
|
Boteon YL, Attard J, Boteon APCS, Wallace L, Reynolds G, Hubscher S, Mirza DF, Mergental H, Bhogal RH, Afford SC. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transpl 2019; 25:1007-1022. [PMID: 30821045 PMCID: PMC6618030 DOI: 10.1002/lt.25439] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Strategies to increase the use of steatotic donor livers are required to tackle the mortality on the transplant waiting list. We aimed to test the efficacy of pharmacological enhancement of the lipid metabolism of human livers during ex situ normothermic machine perfusion to promote defatting and improve the functional recovery of the organs. Because of steatosis, 10 livers were discarded and were allocated either to a defatting group that had the perfusate supplemented with a combination of drugs to enhance lipid metabolism or to a control group that received perfusion fluid with vehicle only. Steatosis was assessed using tissue homogenate and histological analyses. Markers for lipid oxidation and solubilization, oxidative injury, inflammation, and biliary function were evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and in-gel protein detection. Treatment reduced tissue triglycerides by 38% and macrovesicular steatosis by 40% over 6 hours. This effect was driven by increased solubility of the triglycerides (P = 0.04), and mitochondrial oxidation as assessed by increased ketogenesis (P = 0.008) and adenosine triphosphate synthesis (P = 0.01) were associated with increased levels of the enzymes acyl-coenzyme A oxidase 1, carnitine palmitoyltransferase 1A, and acetyl-coenzyme A synthetase. Concomitantly, defatted livers exhibited enhanced metabolic functional parameters such as urea production (P = 0.03), lower vascular resistance, lower release of alanine aminotransferase (P = 0.049), and higher bile production (P = 0.008) with a higher bile pH (P = 0.03). The treatment down-regulated the expression of markers for oxidative injury as well as activation of immune cells (CD14; CD11b) and reduced the release of inflammatory cytokines in the perfusate (tumor necrosis factor α; interleukin 1β). In conclusion, pharmacological enhancement of intracellular lipid metabolism during normothermic machine perfusion decreased the lipid content of human livers within 6 hours. It also improved the intracellular metabolic support to the organs, leading to successful functional recovery and decreased expression of markers of reperfusion injury.
Collapse
Affiliation(s)
- Yuri L. Boteon
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Joseph Attard
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Amanda P. C. S. Boteon
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Lorraine Wallace
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Gary Reynolds
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Stefan Hubscher
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Department of Cellular PathologyQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Darius F. Mirza
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Hynek Mergental
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Ricky H. Bhogal
- The Royal Marsden, Department of Academic SurgeryFulham RoadChelseaLondon
| | - Simon C. Afford
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Zhang M, Ma Z, Wu S. Hypothermic machine perfusion reduces the incidences of early allograft dysfunction and biliary complications and improves 1-year graft survival after human liver transplantation: A meta-analysis. Medicine (Baltimore) 2019; 98:e16033. [PMID: 31169745 PMCID: PMC6571373 DOI: 10.1097/md.0000000000016033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The worldwide organ shortage continues to be the main limitation of liver transplantation. To bridge the gap between the demand and supply of liver grafts, it becomes necessary to use extended criteria donor livers for transplantation. Hypothermic machine perfusion (HMP) is designed to improve the quality of preserved organs before implantation. In clinical liver transplantation, HMP is still in its infancy. METHODS A systematic search of the PubMed, EMBASE, Springer, and Cochrane Library databases was performed to identify studies comparing the outcomes in patients with HMP versus static cold storage (SCS) of liver grafts. The parameters analyzed included the incidences of primary nonfunction (PNF), early allograft dysfunction (EAD), vascular complications, biliary complications, length of hospital stay, and 1-year graft survival. RESULTS A total of 6 studies qualified for the review, involving 144 and 178 liver grafts with HMP or SCS preservation, respectively. The incidences of EAD and biliary complications were significantly reduced with an odds ratio (OR) of 0.36 (95% confidence interval [CI] 0.17-0.77, P = .008) and 0.47 (95% CI 0.28-0.76, P = .003), respectively, and 1-year graft survival was significantly increased with an OR of 2.19 (95% CI 1.14-4.20, P = .02) in HMP preservation compared to SCS. However, there was no difference in the incidence of PNF (OR 0.30, 95% CI 0.06-1.47, P = .14), vascular complications (OR 0.69, 95% CI 0.29-1.66, P = .41), and the length of hospital stay (mean difference -0.30, 95% CI -4.10 to 3.50, P = .88) between HMP and SCS preservation. CONCLUSIONS HMP was associated with a reduced incidence of EAD and biliary complications, as well as an increased 1-year graft survival, but it was not associated with the incidence of PNF, vascular complications, and the length of hospital stay.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Yangmin Zhang
- Department of Blood Transfusion, Xi’an Central Hospital
| | - Mei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
4
|
Stiegler P, Bausys A, Leber B, Strupas K, Schemmer P. Impact of Melatonin in Solid Organ Transplantation-Is It Time for Clinical Trials? A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19113509. [PMID: 30413018 PMCID: PMC6274782 DOI: 10.3390/ijms19113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Solid organ transplantation is the "gold standard" for patients with end-stage organ disease. However, the supply of donor organs is critical, with an increased organ shortage over the last few years resulting in a significant mortality of patients on waiting lists. New strategies to overcome the shortage of organs are urgently needed. Some experimental studies focus on melatonin to improve the donor pool and to protect the graft; however, current research has not reached the clinical level. Therefore, this review provides a comprehensive overview of the data available, indicating that clinical evaluation is warranted.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Augustinas Bausys
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius 08660, Lithuania.
| | - Bettina Leber
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania.
| | - Peter Schemmer
- Department General, Visceral and Transplant Surgery, Medical University of Graz, Graz 8036, Austria.
- Transplant Center Graz, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
5
|
Liu Q, Nassar A, Buccini L, Iuppa G, Soliman B, Pezzati D, Hassan A, Blum M, Baldwin W, Bennett A, Chavin K, Okamoto T, Uso TD, Fung J, Abu-Elmagd K, Miller C, Quintini C. Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion. Liver Transpl 2018; 24:233-245. [PMID: 29125712 DOI: 10.1002/lt.24972] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/18/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Normothermic machine perfusion (NMP) is an emerging technology to preserve liver allografts more effectively than cold storage (CS). However, little is known about the effect of NMP on steatosis and the markers indicative of hepatic quality during NMP. To address these points, we perfused 10 discarded human livers with oxygenated NMP for 24 hours after 4-6 hours of CS. All livers had a variable degree of steatosis at baseline. The perfusate consisted of packed red blood cells and fresh frozen plasma. Perfusate analysis showed an increase in triglyceride levels from the 1st hour (median, 127 mg/dL; interquartile range [IQR], 95-149 mg/dL) to 24th hour of perfusion (median, 203 mg/dL; IQR, 171-304 mg/dL; P = 0.004), but tissue steatosis did not decrease. Five livers produced a significant amount of bile (≥5 mL/hour) consistently throughout 24 hours of NMP. Lactate in the perfusate cleared to <3 mmol/L in most livers within 4-8 hours of NMP, which was independent of bile production rate. This is the first study to characterize the lipid profile and functional assessment of discarded human livers at 24 hours of NMP. Liver Transplantation 24 233-245 2018 AASLD.
Collapse
Affiliation(s)
- Qiang Liu
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | - Ahmed Nassar
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | - Laura Buccini
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | | | - Basem Soliman
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | | | - Ahmed Hassan
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | - Matthew Blum
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | | | - Ana Bennett
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | - Kenneth Chavin
- University Hospital, Case Western Reserve University, Cleveland, OH
| | | | | | - John Fung
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| | | | | | | |
Collapse
|
6
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
7
|
Alleviation of Ischemia-Reperfusion Injury in Liver Steatosis by Augmenter of Liver Regeneration Is Attributed to Antioxidation and Preservation of Mitochondria. Transplantation 2017; 101:2340-2348. [PMID: 28704337 DOI: 10.1097/tp.0000000000001874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fatty liver is one of the major impediments to liver surgery and liver transplantation because steatotic hepatocytes are more susceptible to ischemia-reperfusion injury (IRI). In this study, the effects of augmenter of liver regeneration (ALR) on hepatic IRI in steatotic mice were investigated. METHODS In vivo, liver steatosis of mice was induced by feeding a methionine-choline-deficient diet for 2 weeks. Three days before hepatic partial warm IRI, mice were transfected with the ALR-containing adenovirus. In an in vitro study, the protective effect of ALR on steatotic HepG2 cells was analyzed after hypoxia/reoxygenation (HR) treatment. RESULTS The transfection of the ALR gene into steatotic mice attenuated liver injury, inhibiting hepatic oxidative stress, increasing antioxidation capacities, promoting liver regeneration, and consequently suppressing cell apoptosis/death. Furthermore, resistance to HR injury was notably increased in ALR-transfected cells compared with the vector-transfected cells. The HR-induced rise in the mitochondrial reactive oxygen species was reduced, and cellular antioxidant activities were enhanced. The ALR transfection prevented cells from apoptosis, which can be attributed to the preservation of the mitochondrial membrane potential, enhancement of oxygen consumption rate and production of adenosine triphosphate. CONCLUSIONS ALR protects steatotic hepatocytes from IRI by attenuating oxidative stress and mitochondrial dysfunction, as well as improving antioxidant effect. ALR may be used as a potential therapeutic agent when performing surgery and transplantation of steatotic liver.
Collapse
|
8
|
Croce AC, Ferrigno A, Bertone V, Piccolini VM, Berardo C, Di Pasqua LG, Rizzo V, Bottiroli G, Vairetti M. Fatty liver oxidative events monitored by autofluorescence optical diagnosis: Comparison between subnormothermic machine perfusion and conventional cold storage preservation. Hepatol Res 2017; 47:668-682. [PMID: 27448628 DOI: 10.1111/hepr.12779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022]
Abstract
AIMS Livers with moderate steatosis are currently recruited as marginal organs to face donor shortage in transplantation, even though lipid excess and oxidative stress increase preservation injury risk. Sensitive, real-time detection of liver metabolism engagement could help donor selection and preservation procedures, ameliorating the graft outcome. Hence, we investigated endogenous biomolecules with autofluorescence (AF) properties as biomarkers supporting the detection of liver oxidative events and the assessment of metabolic responses to external stimuli. METHODS Livers from male Wistar rats fed a 12-day methionine/choline-deficient (MCD) diet were subjected to AF spectrofluorometric analysis (fiber-optic probe, 366-nm excitation) before and after organ isolation, and following preservation (cold storage or 20°C machine perfusion) and reperfusion. RESULTS Innovative dynamic AF results on lipid oxidation to lipofuscin-like lipopigments, correlating with biochemical oxidative damage (thiobarbituric acid reactive substances) and antioxidant defense (glutathione) parameters, suggested lipid engagement in MCD livers counteracting reactive oxidizing species. The maintained MCD liver functionality was supported by limited changes in bilirubin AF spectral profile, reflecting bile composition balance, despite their intrinsic mitochondrial weakness, confirmed by adenosine 5'-triphosphate levels, and regardless of different preservation effects on energy metabolism revealed by conventional reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate and flavin AF data. CONCLUSION Autofluorescence showed that, after a relatively short time on an MCD diet, livers are still able to face oxidizing events and maintain a functional balance. These results strengthen AF as a supportive diagnostic tool in experimental hepatology, to characterize marginal livers in real time, monitor their response to ischemia/reperfusion, and investigate protective therapeutic agents.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), San Matteo, Pavia, Italy.,Biology and Biotechnology Department, University of Pavia, Pavia, Italy
| | - Andrea Ferrigno
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| | - Vittorio Bertone
- Biology and Biotechnology Department, University of Pavia, Pavia, Italy
| | - Valeria Maria Piccolini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), San Matteo, Pavia, Italy
| | - Clarissa Berardo
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| | | | - Vittoria Rizzo
- Molecular Medicine Department, University of Pavia and Istituto Ricovero e Cura Carattere Scientifico (IRCCS), San Matteo, Pavia, Italy
| | - Giovanni Bottiroli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), San Matteo, Pavia, Italy.,Biology and Biotechnology Department, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Prieto I, Monsalve M. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 2017; 12:1020-1025. [PMID: 28511345 PMCID: PMC5430574 DOI: 10.1016/j.redox.2017.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive Oxygen Species (ROS) are key mediators of ischemia-reperfusion injury but also required for the induction of the stress response that limits tissue injury and underlies the protection provided by ischemic-preconditioning protocols. Liver steatosis is an important risk factor for liver transplant failure. Liver steatosis is associated with mitochondrial dysfunction and excessive mitochondrial ROS production. Studies aiming at decreasing the sensibility of the steatotic liver to ischemia-reperfusion injury using pre-conditioning protocols, have shown that the steatotic liver has a reduced capacity to respond to these protocols. Recent studies indicate that these effects are related to a reduced capacity of the steatotic liver to respond to elevated ROS levels following reperfusion by inducing a compensatory response. This failure to respond to ROS is associated with reduced levels of antioxidants, mitochondrial damage, hepatocyte cell death, activation of the immune system and induction of pro-fibrotic mediators.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Pantazi E, Bejaoui M, Folch-Puy E, Adam R, Roselló-Catafau J. Advances in treatment strategies for ischemia reperfusion injury. Expert Opin Pharmacother 2016; 17:169-79. [PMID: 26745388 DOI: 10.1517/14656566.2016.1115015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a complex sequence of events and limits the outcome of various surgical interventions. Clinical trials, based on the data of experimental models, aim to prove whether a pharmacological or technical approach could be suitable to provide a beneficial effect in humans. Due to the complexity of IRI, few pharmacological treatments have been investigated in clinical Phase III. AREAS COVERED In this review we report clinical trials that test specific drugs in clinical trials of organ transplantation. These studies form part of Phase II trials and examine the administration of caspase inhibitors, P-selectin antagonist or an antioxidant component in order to attenuate cold IRI during transplantation. Moreover, we provide a brief description of drugs tested on trials of different clinical situations associated to IRI, such as the coronary artery bypass graft surgery and percutaneous coronary intervention. EXPERT OPINION Future clinical trials could be centered on the application of techniques suitable for organs with increased vulnerability toward IRI. Furthermore, the standardization of reliable biomarkers and a careful estimation of the impact of high risk factors may be the key in order to achieve a more critical evaluation of the obtained results.
Collapse
Affiliation(s)
- Eirini Pantazi
- a Experimental Hepatic Ischemia-Reperfusion Unit , Institute of Biomedical Research of Barcelona (IIBB-CSIC) , Barcelona , Spain
| | - Mohamed Bejaoui
- a Experimental Hepatic Ischemia-Reperfusion Unit , Institute of Biomedical Research of Barcelona (IIBB-CSIC) , Barcelona , Spain
| | - Emma Folch-Puy
- a Experimental Hepatic Ischemia-Reperfusion Unit , Institute of Biomedical Research of Barcelona (IIBB-CSIC) , Barcelona , Spain
| | - René Adam
- b AP-HP Hôpital Paul Brousse , Centre Hepato-Biliaire, Univ Paris-Sud Villejuif , Paris , France
| | - Joan Roselló-Catafau
- a Experimental Hepatic Ischemia-Reperfusion Unit , Institute of Biomedical Research of Barcelona (IIBB-CSIC) , Barcelona , Spain
| |
Collapse
|
11
|
Pezzati D, Ghinolfi D, De Simone P, Balzano E, Filipponi F. Strategies to optimize the use of marginal donors in liver transplantation. World J Hepatol 2015; 7:2636-47. [PMID: 26609341 PMCID: PMC4651908 DOI: 10.4254/wjh.v7.i26.2636] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/04/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the treatment of choice for end stage liver disease, but availability of liver grafts is still the main limitation to its wider use. Extended criteria donors (ECD) are considered not ideal for several reasons but their use has dramatically grown in the last decades in order to augment the donor liver pool. Due to improvement in surgical and medical strategies, results using grafts from these donors have become acceptable in terms of survival and complications; nevertheless a big debate still exists regarding their selection, discharge criteria and allocation policies. Many studies analyzed the use of these grafts from many points of view producing different or contradictory results so that accepted guidelines do not exist and the use of these grafts is still related to non-standardized policies changing from center to center. The aim of this review is to analyze every step of the donation-transplantation process emphasizing all those strategies, both clinical and experimental, that can optimize results using ECD.
Collapse
Affiliation(s)
- Daniele Pezzati
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Davide Ghinolfi
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Paolo De Simone
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Emanuele Balzano
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Franco Filipponi
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| |
Collapse
|
12
|
Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch-Puy E, Serafin A, Capasso C, C T S, Rosselló-Catafau J. Acetazolamide protects steatotic liver grafts against cold ischemia reperfusion injury. J Pharmacol Exp Ther 2015; 355:191-8. [PMID: 26330538 DOI: 10.1124/jpet.115.225177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 08/29/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a primary concern in liver transplantation, especially when steatosis is present. Acetazolamide (AZ), a specific carbonic anhydrase (CA) inhibitor, has been suggested to protect against hypoxia. Here, we hypothesized that AZ administration could be efficient to protect fatty livers against cold IRI. Obese Zucker rat livers were preserved in Institut Georges Lopez-1 storage solution for 24 hours at 4°C and ex vivo perfused for 2 hours at 37°C. Alternatively, rats were also treated with intravenous injection of AZ (30 mg/kg) before liver recovery. Liver injury, hepatic function, and vascular resistance were determined. CA II protein levels and CA hydratase activity were assessed as well as other parameters involved in IRI (endothelial nitric oxide synthase, mitogen activated protein kinase family, hypoxic inducible factor 1 alpha, and erythropoietin). We demonstrated that AZ administration efficiently protects the steatotic liver against cold IRI. AZ protection was associated with better function, decreased vascular resistance, and activation of endothelial nitric oxide synthase. This was consistent with an effective mitogen activated protein kinase inactivation. Finally, no effect on the hypoxic inductible factor 1 alpha/erythropoietin pathway was observed. The present study demonstrated that AZ administration is a suitable pharmacological strategy for preserving fatty liver grafts against cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Eirini Pantazi
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Viviana De Luca
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Arnau Panisello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Emma Folch-Puy
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Anna Serafin
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Clemente Capasso
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Supuran C T
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| | - Joan Rosselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institute of Biomedical Research of Barcelona-Spanish National Research Council, Barcelona, Catalonia, Spain (M.B., E.P., A.P., E. F.-P., J. R.-C.); Institute of Bioscience and Bioresources, National Research Council, Napoli, Italy (V.D.L., C.C.); University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy (S.C.T.); and Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, Catalonia, Spain (A.S.)
| |
Collapse
|
13
|
Bian H, Hakkarainen A, Zhou Y, Lundbom N, Olkkonen VM, Yki-Järvinen H. Impact of non-alcoholic fatty liver disease on liver volume in humans. Hepatol Res 2015; 45:210-9. [PMID: 24698021 DOI: 10.1111/hepr.12338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/09/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
AIM Knowledge of liver volume is needed in the preoperative screening of liver transplant donors and in pharmacokinetic studies. In previous studies, bodyweight, surface area, age and sex have been identified as predictors of total liver volume, but the impact of non-alcoholic fatty liver disease (NAFLD) independent of body size on liver volume has not been determined. We examined whether and to what extent liver fat due to NAFLD influences liver volume. METHODS We quantified the percentage of liver fat by proton magnetic resonance spectroscopy ((1) H-MRS) and liver total, lean and fat volumes using magnetic resonance imaging (MRI) in 112 subjects (62 women, 50 men), who were characterized with respect to metabolic parameters associated with NAFLD. RESULTS Of the subjects, 45% had NAFLD (liver fat 12.5 ± 4.5% vs 1.8 ± 1.6%, NAFLD vs no NAFLD, P < 0.001). Total liver volume was 29% higher in subjects with NAFLD (1.91 ± 0.45 L) than in those with no NAFLD (1.49 ± 0.31 L, P < 0.001). In multiple linear regression analysis, the percentage of liver fat and bodyweight independently explained variation in total liver volume (r(2) = 0.42, P < 0.001). The r-values for the relationship between metabolic parameters and the total liver fat volume were not significantly better than those between metabolic parameters and the percentage of liver fat. CONCLUSION Both bodyweight and NAFLD increase liver volume independent of each other. Measurement of liver fat by (1) H-MRS allows accurate quantification of NAFLD and calculation of total liver volume.
Collapse
Affiliation(s)
- Hua Bian
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Bruinsma BG, Yarmush ML, Uygun K. Organomatics and organometrics: Novel platforms for long-term whole-organ culture. TECHNOLOGY 2014; 2:13. [PMID: 25035864 PMCID: PMC4097862 DOI: 10.1142/s2339547814300029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organ culture systems are instrumental as experimental whole-organ models of physiology and disease, as well as preservation modalities facilitating organ replacement therapies such as transplantation. Nevertheless, a coordinated system of machine perfusion components and integrated regulatory control has yet to be fully developed to achieve long-term maintenance of organ function ex vivo. Here we outline current strategies for organ culture, or organomatics, and how these systems can be regulated by means of computational algorithms, or organometrics, to achieve the organ culture platforms anticipated in modern-day biomedicine.
Collapse
|