1
|
Liang Y, Wu D, Qu Q, Li Z, Yin H. MORC4 plays a tumor-promoting role in colorectal cancer via regulating PCGF1/CDKN1A axis in vitro and in vivo. Cancer Gene Ther 2023:10.1038/s41417-023-00605-2. [PMID: 36932196 DOI: 10.1038/s41417-023-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
MORC family CW-type zinc finger 4 (MORC4) possessing nuclear matrix binding domains has been observed to be involved in multiple cancer development. By digging three gene expression omnibus (GEO) gene microarrays (GSE110223, GSE110224 and GSE24514), we found that MORC4 was overexpressed in colorectal cancer (CRC) samples (log2 Fold change >1, p < 0.05). We aimed to investigate the role of MORC4 in CRC malignant behaviors, with an emphasis on polycomb group ring finger 1 (PCGF1)/cyclin-dependent kinase inhibitor 1A (CDKN1A) axis. Firstly, we confirmed MORC4 as an upregulated gene in 60 pairs of frozen CRC and adjacent normal samples. MORC4 overexpression increased proliferation and metastasis, and decreased apoptosis in SW480 and HT29 cells, which was diminished by the knockdown of PCGF1, a transcriptional repressor of CDKN1A (a potent cyclin-dependent kinase inhibitor). MORC4 was further identified as a novel molecule that interacted with PCGF1 via coimmunoprecipitation. MORC4 itself did not substantially suppress CDKN1A transcriptional activity, but it augmented PCGF1's effect on CDKN1A. Additionally, MORC4 acted as the substrate of HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 2 (HECW2) and was degraded through ubiquitin-proteasome system. Collectively, our work suggested that MORC4 accelerated CRC progression via governing PCGF1/CDKN1A signaling.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
2
|
Söderman J, Berglind L, Almer S. Inverse and Concordant Mucosal Pathway Gene Expressions in Inflamed and Non-Inflamed Ulcerative Colitis Patients: Potential Relevance to Aetiology and Pathogenesis. Int J Mol Sci 2022; 23:ijms23136944. [PMID: 35805947 PMCID: PMC9266769 DOI: 10.3390/ijms23136944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) arises from a complex interplay between host and environmental factors, but with a largely unsolved pathophysiology. The pathophysiology was outlined by RNA-sequencing of mucosal biopsies from non-inflamed and inflamed colon of UC patients (14 and 17, respectively), and from 27 patients without intestinal inflammation. Genes differentially expressed (DE), or present in enriched gene sets, were investigated using statistical text analysis of functional protein information. Compared with controls, inflamed and non-inflamed UC mucosa displayed 9360 and 52 DE genes, respectively. Seventy-three non-pseudogenes were DE relative to both gender and inflammation. Mitochondrial processes were downregulated in inflamed and upregulated in non-inflamed UC mucosa, whereas angiogenesis and endoplasmic reticulum (ER) stress were upregulated in both tissue states. Immune responses were upregulated in inflamed mucosa, whereas the non-inflamed UC mucosa presented both up- and downregulated gene sets. DE and enriched genes overlapped with genes present in inflammatory bowel disease genome-wide associated loci (p = 1.43 × 10−18), especially regarding immune responses, respiratory chain, angiogenesis, ER stress, and steroid hormone metabolism. Apart from confirming established pathophysiological mechanisms of immune cells, our study provides evidence for involvement of less described pathways (e.g., respiratory chain, ER stress, fatty-acid oxidation, steroid hormone metabolism and angiogenesis).
Collapse
Affiliation(s)
- Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden;
- Correspondence:
| | - Linda Berglind
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden;
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden;
- IBD Unit, Division of Gastroenterology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Chutani N, Singh AK, Kadumuri RV, Pakala SB, Chavali S. Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. J Mol Biol 2022; 434:167664. [PMID: 35659506 DOI: 10.1016/j.jmb.2022.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelers affect the spatio-temporal dynamics of global gene-expression by structurally modulating and/or reorganizing the chromatin. Microrchidia (MORC) family is a relatively new addition to the four well studied families of chromatin remodeling proteins. In this review, we discuss the current understanding of the structural aspects of human MORCs as well as their epigenetic functions. From a molecular and systems-level perspective, we explore their participation in phase-separated structures, possible influence on various biological processes through protein-protein interactions, and potential extra-nuclear roles. We describe how dysregulation/dysfunction of MORCs can lead to various pathological conditions. We conclude by emphasizing the importance of undertaking integrated efforts to obtain a holistic understanding of the various biological roles of MORCs.
Collapse
Affiliation(s)
- Namita Chutani
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/ChutaniNamita
| | - Anjali Kumari Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/anjali_k_s
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Suresh B Pakala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| |
Collapse
|
4
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
5
|
Tencer AH, Cox KL, Wright GM, Zhang Y, Petell CJ, Klein BJ, Strahl BD, Black JC, Poirier MG, Kutateladze TG. Molecular mechanism of the MORC4 ATPase activation. Nat Commun 2020; 11:5466. [PMID: 33122719 PMCID: PMC7596504 DOI: 10.1038/s41467-020-19278-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Human Microrchidia 4 (MORC4) is associated with acute and chronic pancreatitis, inflammatory disorders and cancer but it remains largely uncharacterized. Here, we describe the structure-function relationship of MORC4 and define the molecular mechanism for MORC4 activation. Enzymatic and binding assays reveal that MORC4 has ATPase activity, which is dependent on DNA-binding functions of both the ATPase domain and CW domain of MORC4. The crystal structure of the ATPaseCW cassette of MORC4 and mutagenesis studies show that the DNA-binding site and the histone/ATPase binding site of CW are located on the opposite sides of the domain. The ATPase and CW domains cooperate in binding of MORC4 to the nucleosome core particle (NCP), enhancing the DNA wrapping around the histone core and impeding binding of DNA-associated proteins, such as transcription factors, to the NCP. In cells, MORC4 mediates formation of nuclear bodies in the nucleus and has a role in the progression of S-phase of the cell cycle, and both these functions require CW and catalytic activity of MORC4. Our findings highlight the mechanism for MORC4 activation, which is distinctly different from the mechanisms of action observed in other MORC family members.
Collapse
Affiliation(s)
- Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Gregory M Wright
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Christopher J Petell
- Department of Biochemistry & Biophysics, the University of North Carolina School of Medicine, and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, the University of North Carolina School of Medicine, and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Joshua C Black
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Yang Z, Zhuang Q, Hu G, Geng S. MORC4 is a novel breast cancer oncogene regulated by miR-193b-3p. J Cell Biochem 2018; 120:4634-4643. [PMID: 30320920 DOI: 10.1002/jcb.27751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
A better understanding of breast cancer pathogenesis would contribute to improved diagnosis and therapy and potentially decreased mortality rates. Here, we found that the MORC family CW-type zinc finger 4 (MORC4) overexpression in breast cancer tissues is associated with poor survival, and the short-interfering RNA knockdown of MORC4 suppresses the growth of breast cancer cells by promoting apoptosis. To investigate the mechanisms associated with MORC4 upregulation, microRNAs potentially targeting MORC4 were analyzed, with miR-193b-3p identified as the regulator and a negative correlation between miR-193b-3p and MORC4 expression determined in both breast cancer cell lines and tissues. Further analysis verified that MORC4 silencing did not affect miR-193b-3p expression, although altered miR-193b-3p expression attenuated MORC4 protein levels. Moreover, dual-luciferase reporter assays verified miR-193b-3p binding to the 3' untranslated region of MORC4. Furthermore, restoration of miR-193b-3p expression in breast cancer cells led to decreased growth and activation of apoptosis, which was consistent with results associated with MORC4 silencing in breast cancer cells. These results identified MORC4 as differentially expressed in breast cancer cells and tissues and its downregulation by miR-193b-3p, as well as its roles in regulating the growth of breast cancer cells via regulation of apoptosis. Our findings offer novel insights into potential mechanisms associated with breast cancer pathogenesis.
Collapse
Affiliation(s)
- Zi'ang Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulin Zhuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangfu Hu
- Department of Breast Surgery, Huangpu District Central Hospital, Shanghai, China
| | - Shengkai Geng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Norén E, Almer S, Söderman J. Genetic variation and expression levels of tight junction genes identifies association between MAGI3 and inflammatory bowel disease. BMC Gastroenterol 2017; 17:68. [PMID: 28545409 PMCID: PMC5445404 DOI: 10.1186/s12876-017-0620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is associated with increased intestinal permeability, which involves paracellular passage regulated through tight junctions (TJ). The aim of the study was to investigate single nucleotide polymorphisms (SNP) located in genes encoding interacting TJ proteins and corresponding expressions, in relation to IBD. Methods Allelic associations between TJ-related genes (F11R, MAGI1, MAGI2, MAGI3, PARD3, PTEN, and TJP1) and IBD, Crohn’s disease (CD), or ulcerative colitis (UC) were investigated. PTPN22 was included since it’s located in the same genetic region as MAGI3. Gene expression levels were investigated in relation to genotype, inflammatory status, phenotype, and medical treatment. Results The two strongest allelic associations were observed between IBD and SNPs in MAGI2 (rs6962966) and MAGI3 (rs1343126). Another MAGI3 SNP marker (rs6689879) contributed to increased ileal MAGI3 expression level in non-IBD controls. Furthermore, association between inflammation and decreased expression levels of MAGI3, PTEN, and TJP1 in colonic IBD as well as UC mucosa, and between inflammation and increased expression of PTPN22 in colonic IBD mucosa, was observed. Conclusions Our findings lend support to a genetic basis for modulation of intestinal epithelial barrier in IBD, and we have identified MAGI3 as a new candidate gene for IBD. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0620-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Norén
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden. .,Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden.
| | - Sven Almer
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,GastroCentrum, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jan Söderman
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Srinivasan V, Braidy N, Xu YH, Xie P, Kancherla K, Chandramohan S, Chan EKW, Chan DKY. Association of genetic polymorphisms of claudin-1 with small vessel vascular dementia. Clin Exp Pharmacol Physiol 2017; 44:623-630. [DOI: 10.1111/1440-1681.12747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Srinivasan
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
| | - Nady Braidy
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Ingham Institute; Liverpool NSW Australia
- Centre for Healthy Brain Ageing; School of Psychiatry; University of New South Wales; Sydney NSW Australia
| | - Ying Hua Xu
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
- Ingham Institute; Liverpool NSW Australia
| | - Peter Xie
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
| | - Kiran Kancherla
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
| | - Sashiruben Chandramohan
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
| | | | - Daniel KY Chan
- Department of Aged Care and Rehabilitation; Bankstown Hospital; Bankstown NSW Australia
- Faculty of Medicine; University of New South Wales; Sydney NSW Australia
- Ingham Institute; Liverpool NSW Australia
| |
Collapse
|
9
|
Kang M, Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Semin Immunol 2017; 32:3-13. [PMID: 28465070 DOI: 10.1016/j.smim.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Dysbiosis of gut microbiota occurs in many human chronic immune-mediated diseases, such as inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Reciprocally, uncontrolled immune responses, that may or may not be induced by dysbiosis, are central to the development of IBD and CAC. There has been a surge of interest in investigating the relationship between microbiota, inflammation and CAC. In this review, we discuss recent findings related to gut microbiota and chronic immune-mediated diseases, such as IBD and CAC. Moreover, the molecular mechanisms underlying the roles of chronic inflammation in CAC are examined. Finally, we discuss the development of novel microbiota-based therapeutics for IBD and colorectal cancer.
Collapse
Affiliation(s)
- Mingsong Kang
- University of Toronto, Department of Immunology, Toronto, Ontario, Canada
| | - Alberto Martin
- University of Toronto, Department of Immunology, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
11
|
Hong G, Qiu H, Wang C, Jadhav G, Wang H, Tickner J, He W, Xu J. The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. J Cell Physiol 2016; 232:928-934. [PMID: 27791268 DOI: 10.1002/jcp.25665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023]
Abstract
Microrchidia (MORC or MORC family CW-type zinc finger protein), a highly conserved nuclear protein superfamily, is an interesting new player in signaling-dependent chromatin remodeling and epigenetic regulation. MORC family proteins consist of MORC1, MORC2, MORC3, and MORC4 which display common structural determinants such as CW-type zinc finger and coiled-coil domains. They also exhibit unique structural motifs and tissue-specific expression profiles. MORC1 was first discovered as a key regulator for male meiosis and spermatogenesis. Accumulating biochemical and functional analyses unveil MORC proteins as key regulators for cancer development. More recently, using an ENU mutagenesis mouse model, MORC3 was found to play a role in regulating bone and calcium homeostasis. Here we discuss recent research progress on the emerging role of MORC proteins in cancer development and bone metabolism. Unravelling the cellular and molecular mechanisms by which MORC proteins carry out their functions in a tissue specific manner are important subjects for future investigation. J. Cell. Physiol. 232: 928-934, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guoju Hong
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chao Wang
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Gaurav Jadhav
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Haibin Wang
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jennifer Tickner
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei He
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jiake Xu
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Association Analysis of PRSS1-PRSS2 and CLDN2-MORC4 Variants in Nonalcoholic Chronic Pancreatitis Using Tropical Calcific Pancreatitis as Model. Pancreas 2016; 45:1153-7. [PMID: 26784911 DOI: 10.1097/mpa.0000000000000608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Association of PRSS1-PRSS2 (rs10273639) and CLDN2-MORC4 (rs12688220 and rs7057398) variants with alcohol-related chronic pancreatitis (CP) is established but with nonalcoholic CP is unclear. We addressed this inconsistency using tropical calcific pancreatitis (TCP) as model. METHODS We sequenced 5'-UTR of PRSS1 and genotyped CLDN2-MORC4 variants in 555 patients with TCP and 801 controls and performed association analysis. Gene-gene interaction between PRSS1 and CLDN2-MORC4 variants and with p.Asn34Ser SPINK1 and p.Leu26Val CTSB was also evaluated. RESULTS We observed significant association of rs10273639/rs4726576 in PRSS1-PRSS2 (odds ratio [OR] = 0.72; P = 3.50 × 10) and CLDN2-MORC4 variants, rs12688220 (OR = 1.54; P = 1.22 × 10) and rs7057398 (OR = 1.50; P = 1.22 × 10) with TCP. Patients carrying p.Asn34Ser SPINK1 were significantly younger than those with rs4726576 risk genotype (30.0 vs 38.0 years; P = 0.015) and those carrying both were even younger (22.0 years; P = 0.001). Presence of risk allele at rs12688220 in patients carrying p.Asn34Ser SPINK1 delayed the age of onset (32.0 vs 24.0 years; P = 0.013). CONCLUSIONS Our study establishes strong association of PRSS1-PRSS2 and CLDN2-MORC4 variants with TCP and thus with nonalcoholic CP. These variants independently interact with p.Asn34Ser SPINK1 and influence the age of onset in TCP. However, latter results need to be replicated in other cohorts.
Collapse
|
13
|
Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis. PLoS One 2016; 11:e0147345. [PMID: 26820620 PMCID: PMC4731142 DOI: 10.1371/journal.pone.0147345] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
A recent genome-wide association study (GWAS) identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525-OR 1.71, P = 1.38 x 10-09; rs12008279-OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220-OR 1.72, P = 9.20 x 10-09; rs6622126-OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31-0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.
Collapse
|
14
|
Yadav BK, Shin BS. Single-Nucleotide Polymorphisms of Tight Junction Component Claudin-1 Associated with Leukoaraiosis. J Stroke Cerebrovasc Dis 2015; 24:1662-70. [PMID: 25956626 DOI: 10.1016/j.jstrokecerebrovasdis.2015.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) plays a major role in the development of leukoaraiosis (LA). The junctional complex of BBB consists of tight junction (TJ) and adherens junction (AJ). Claudin-1 is the integral component of TJ. The aim of this study was to evaluate whether genetic variations in claudin-1 gene are associated with the development of LA. METHODS LA has to be diagnosed based on images. A total of 228 LA cases and 203 controls were enrolled from the individuals who underwent brain magnetic resonance imaging with obtainable vascular risk factors. Genotyping of claudin-1 single-nucleotide polymorphisms (SNPs) (rs17501010, rs893051, and rs9290927) was performed by real-time polymerase chain reaction with LightSNiP reagents (coupled primer and probe) and FastStart DNAMaster HybProbe (Roche Diagnostic, GmBH, Mannheim, Germany) in LightCycler 2.0. RESULTS Among the 3 SNPs of claudin-1, a significant genetic difference was found only between control and LA (both LA-periventricular white matter [PVWM] and LA-subcortical deep white matter) with SNP rs9290927. However, their haplotypes G-G-T and G-C-A were significantly different between LA-PVWM and control, which increase the development of LA-PVWM with odds ratios of 1.45 and .57, respectively. CONCLUSIONS This study demonstrated first evidence of genetic polymorphism of TJ component claudin-1 and their haplotypes associated with LA.
Collapse
Affiliation(s)
- Binod Kumar Yadav
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk, Republic of Korea; Department of Biochemistry, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Byoung-Soo Shin
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk, Republic of Korea; Department of Neurology, Chonbuk National University Medical School, Jeonju, Chonbuk, Republic of Korea.
| |
Collapse
|
15
|
Xiang RL, Mei M, Cong X, Li J, Zhang Y, Ding C, Wu LL, Yu GY. Claudin-4 is required for AMPK-modulated paracellular permeability in submandibular gland cells. J Mol Cell Biol 2014; 6:486-97. [PMID: 25503106 DOI: 10.1093/jmcb/mju048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tight junction plays an important role in mediating paracellular permeability in epithelia. We previously found that activation of AMP-activated protein kinase (AMPK) increased saliva secretion by modulating paracellular permeability in submandibular glands. However, the molecular mechanisms underlying AMPK-modulated paracellular permeability are unknown. In this study, we found that AICAR, an AMPK agonist, increased saliva secretion in the isolated rat submandibular glands, decreased transepithelial electrical resistance (TER), and increased 4 kDa FITC-dextran flux in cultured SMG-C6 cells. AICAR also induced redistribution of tight junction protein claudin-4, but not claudin-1, claudin-3, occludin, or ZO-1, from the cytoplasm to the membrane. Moreover, knockdown of claudin-4 by shRNA suppressed while claudin-4 re-expression restored the TER and 4 kDa FITC-dextran flux responses to AICAR. Additionally, AICAR increased ERK1/2 phosphorylation, and inhibition of ERK1/2 by U0126, an ERK1/2 kinase inhibitor, or by siRNA decreased AICAR-induced TER responses. AICAR induced the serine S199 phosphorylation of claudin-4 and enhanced the interaction of claudin-4 and occludin. Furthermore, pretreatment with U0126 significantly suppressed AMPK-modulated phosphorylation, redistribution, and interaction with occludin of claudin-4. Taken together, these results indicated that claudin-4 played a crucial role in AMPK-modulated paracellular permeability and ERK1/2 was required in AMPK-modulated tight junction barrier function in submandibular gland.
Collapse
Affiliation(s)
- Ruo-Lan Xiang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Mei Mei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xin Cong
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yan Zhang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|