1
|
Xu H, Qiu X, Wang Z, Wang K, Tan Y, Gao F, Perini MV, Xu X. Role of the portal system in liver regeneration: From molecular mechanisms to clinical management. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:1-10. [PMID: 39959033 PMCID: PMC11771269 DOI: 10.1016/j.livres.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2025]
Abstract
The liver has a strong regenerative capacity that ensures patient recovery after hepatectomy and liver transplantation. The portal system plays a crucial role in the dual blood supply to the liver, making it a significant factor in hepatic function. Several surgical strategies, such as portal vein ligation, associating liver partition and portal vein ligation for staged hepatectomy, and dual vein embolization, have highlighted the portal system's importance in liver regeneration. Following hepatectomy or liver transplantation, the hemodynamic properties of the portal system change dramatically, triggering regeneration via shear stress and the induction of hypoxia. However, excessive portal hyperperfusion can harm the liver and negatively affect patient outcomes. Furthermore, as the importance of the gut-liver axis has gradually been revealed, the effect of metabolites and cytokines from gut microbes carried by portal blood on liver regeneration has been acknowledged. From these perspectives, this review outlines the molecular mechanisms of the portal system's role in liver regeneration and summarizes therapeutic strategies based on the portal system intervention to promote liver regeneration.
Collapse
Affiliation(s)
- Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xun Qiu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhoucheng Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yawen Tan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marcos Vinicius Perini
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang Y, Tan N, Su R, Liu Z, Hu N, Dong Q. Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking. Comb Chem High Throughput Screen 2024; 27:1948-1968. [PMID: 38357941 DOI: 10.2174/0113862073275657231210055250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined. AIM To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established. MATERIALS AND METHODS A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results. RESULTS Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model. CONCLUSIONS In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | - Nixia Tan
- Medical College of Qinghai University, Xining, 810016, China
| | - Rong Su
- Medical College of Qinghai University, Xining, 810016, China
| | - Zhenhua Liu
- Medical College of Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
3
|
He H, Xu B, Ge P, Gao Y, Wei M, Li T, Zhang R, Li B, Cao H, Zhang K. The effects of taraxasterol on liver fibrosis revealed by RNA sequencing. Int Immunopharmacol 2023; 114:109481. [PMID: 36470119 DOI: 10.1016/j.intimp.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022]
Abstract
Effective treatment of liver fibrosis remains a challenging medical problem. Taraxasterol (TAR) has anti-inflammatory, anti-tumor and hepatoprotective effects. Studies have shown that TAR has good biological activity against liver injury induced by various factors. However, the anti-fibrotic effect of TAR and its mechanism are never clarified. The purpose of this study was to investigate the effects of TAR in liver fibrosis and to reveal its possible mechanism by RNA sequencing. Our results suggested that TAR attenuated CCl4-induced hepatocyte necrosis, inflammatory infiltration and ECM deposition. TAR inhibited the levels of ALT, AST, ALP, γ-GT, LN, HA, PC III and IV-C in serum and TNF-α, IL-6, IL-1β and MDA in liver. In addition, TAR increased the activities of SOD and GSH-Px in liver. RNA sequencing analysis of liver tissues revealed that CCl4 and TAR significantly altered 4,155 genes and 2,675 genes, respectively. TAR reversed changes in ECM-related genes. More specifically, TAR mediated the expression of genes related to the activation of the Hippo pathway, while inhibiting the expression of genes related to the activation of HIF-1α, TGF-β/Smad, and Wnt pathways. In the validation experiments, the qRT-PCR results showed that the expression levels of Yap1, Tead3, Hif1α, Vegfa, Tgfβ1, Want3a, and Ctnnb1 mRNA were consistent with the RNA sequencing results. The Western blot results showed that TAR inhibited the levels of TGF-β1 and p-Smad2. In addition, the results in vitro were consistent with those in vivo. Therefore, we concluded that TAR improved CCl4-induced liver fibrosis by regulating Hippo, HIF-1α, TGF-β/Smad and Wnt pathways.
Collapse
Affiliation(s)
- Haiyan He
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Baoling Xu
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541104, China
| | - Pengfei Ge
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541104, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Min Wei
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Ting Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Ruobing Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541104, Guangxi, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541104, Guangxi, China.
| |
Collapse
|
4
|
Sever AZ, Sever M, Vidovic T, Lojo N, Kolenc D, Vuletic LB, Drmic D, Kokot A, Zoricic I, Coric M, Vlainic J, Poljak L, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 in the therapy of the rats with bile duct ligation. Eur J Pharmacol 2019; 847:130-142. [PMID: 30690000 DOI: 10.1016/j.ejphar.2019.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Recently, stable gastric pentadecapeptide BPC 157 reversed the high MDA- and NO-tissue values to the healthy levels. Thereby, BPC 157 therapy cured rats with bile duct ligation (BDL) (sacrifice at 2, 4, 6, 8 week). BPC 157-medication (10 μg/kg, 10 ng/kg) was continuously in drinking water (0.16 μg/ml, 0.16 ng/ml, 12 ml/rat/day) since awakening from surgery, or since week 4. Intraperitoneal administration was first at 30 min post-ligation, last at 24 h before sacrifice. Local bath BPC 157 (10 µg/kg) with assessed immediate normalization of portal hypertension was given immediately after establishing portal hypertension values at 4, 6, 8 week. BPC 157 therapy markedly abated jaundice, snout, ears, paws, and yellow abdominal tegmentum in controls since 4th week, ascites, nodular, steatotic liver with large dilatation of main bile duct, increased liver and/or cyst weight, decreased body weight. BPC 157 counteracts the piecemeal necrosis, focal lytic necrosis, apoptosis and focal inflammation, disturbed cell proliferation (Ki-67-staining), cytoskeletal structure in the hepatic stellate cell (α-SMA staining), collagen presentation (Mallory staining). Likewise, counteraction includes increased AST, ALT, GGT, ALP, total bilirubin, direct and indirect and decreased albumin serum levels. As the end-result appear normalized MDA- and NO-tissue values, next to Western blot of NOS2 and NOS3 in the liver tissue, and decreased IL-6, TNF-α, IL-1β levels in liver tissue. Finally, although portal hypertension is sustained in BDL-rats, with BPC 157 therapy, portal hypertension in BDL-rats is either not even developed or rapidly abated, depending on the given BPC 157's regimen. Thus, BPC 157 may counteract liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Anita Zenko Sever
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tinka Vidovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nermin Lojo
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Danijela Kolenc
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivan Zoricic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marijana Coric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Ljiljana Poljak
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
5
|
Jin X, Zimmers TA, Jiang Y, Milgrom DP, Zhang Z, Koniaris LG. Meloxicam increases epidermal growth factor receptor expression improving survival after hepatic resection in diet-induced obese mice. Surgery 2018; 163:1264-1271. [PMID: 29361369 DOI: 10.1016/j.surg.2017.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with fatty liver have delayed regenerative responses, increased hepatocellular injury, and increased risk for perioperative mortality. Currently, no clinical therapy exists to prevent liver failure or improve regeneration in patients with fatty liver. Previously we demonstrated that obese mice have markedly reduced levels of epidermal growth factor receptor in liver. We sought to identify pharmacologic agents to increase epidermal growth factor receptor expression to improve hepatic regeneration in the setting of fatty liver resection. METHODS Lean (20% calories from fat) and diet-induced obese mice (60% calories from fat) were subjected to 70% or 80% hepatectomy. RESULTS Using the BaseSpace Correlation Engine of deposited gene arrays we identified agents that increased hepatic epidermal growth factor receptor. Meloxicam was identified as inducing epidermal growth factor receptor expression across species. Meloxicam improved hepatic steatosis in diet-induced obese mice both grossly and histologically. Immunohistochemistry and Western blot analysis demonstrated that meloxicam pretreatment of diet-induced obese mice dramatically increased epidermal growth factor receptor protein expression in hepatocytes. After 70% hepatectomy, meloxicam pretreatment ameliorated liver injury and significantly accelerated mitotic rates of hepatocytes in obese mice. Recovery of liver mass was accelerated in obese mice pretreated with meloxicam (by 26% at 24 hours and 38% at 48 hours, respectively). After 80% hepatectomy, survival was dramatically increased with meloxicam treatment. CONCLUSION Low epidermal growth factor receptor expression is a common feature of fatty liver disease. Meloxicam restores epidermal growth factor receptor expression in steatotic hepatocytes. Meloxicam pretreatment may be applied to improve outcome after fatty liver resection or transplantation with steatotic graft.
Collapse
Affiliation(s)
- Xiaoling Jin
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanlin Jiang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel P Milgrom
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongxiu Zhang
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Tanaka H, Fukushima K, Srinivasan PK, Pawlowsky K, Koegel B, Hata K, Ku Y, Uemoto S, Tolba RH. Efficacy of the Novel Medical Adhesive, MAR-VIVO-107, in an Acute Porcine Liver Resection Model. Surg Innov 2017; 24:423-431. [PMID: 28715950 DOI: 10.1177/1553350617720993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Despite modern surgical techniques, insufficient hemostasis after liver trauma is still a major cause of morbidity and mortality after injury. Therefore, efficient hemostatic agents are indicated. In this study, we evaluated the hemostatic efficacy of a novel synthetic wound adhesive (MAR-VIVO-107) based on polyurethane/polyurea, compared with a widely used fibrin adhesive (Tisseel). MATERIALS AND METHODS Twelve German Landrace pigs were randomly assigned to 2 groups. The animals were operated under sterile conditions. A midline laparotomy was performed and the left liver lobe was isolated and resected, using a surgical scissor, in order to induce hepatic trauma. MAR-VIVO-107 or Tisseel was applied to the resected area. The animals were monitored for 60 minutes; thereafter, they were sacrificed under anesthesia. Blood and tissue samples were collected pre- and postresection for biochemical and hematological analyses. RESULTS MAR-VIVO-107 versus Tisseel (mean ± SD, P value)-postsurgical survival rate was 100% in both groups. Bleeding time was significantly higher in Tisseel compared with MAR-VIVO-107 (10.3 ± 5.0 vs 3.7 ± 1.5 minutes, P = .0124). In trend, blood loss was less in the MAR-VIVO-107 group (54.3 ± 34.9 vs 105.5 ± 65.8 g, P = .222). Aspartate transaminase levels were significantly lower in the MAR-VIVO-107 group when compared with the Tisseel group (39.0 ± 10.0 vs 72.4 ± 23.4 U/L, P = .0459). CONCLUSION The efficacy of MAR-VIVO-107 and comparable performance to the gold standard fibrin have been shown under pre-clinical conditions. MAR-VIVO-107 permits hemorrhage control within seconds, even in wet environment.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- 1 RWTH-Aachen International University, Aachen, Germany.,2 Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Fukushima
- 1 RWTH-Aachen International University, Aachen, Germany.,3 Kobe University Hospital, Hyogo, Japan
| | | | | | | | - Koichiro Hata
- 2 Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yonson Ku
- 3 Kobe University Hospital, Hyogo, Japan
| | - Shinji Uemoto
- 2 Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - René H Tolba
- 1 RWTH-Aachen International University, Aachen, Germany
| |
Collapse
|
7
|
Iskandarov E, Kadaba Srinivasan P, Xin W, Bleilevens C, Afify M, Hamza A, Wei L, Hata K, Agayev B, Tolba R. Protective Effects of Adenosine Receptor Agonist in a Cirrhotic Liver Resection Model. HEPATITIS MONTHLY 2016; 16:e36821. [PMID: 27799962 PMCID: PMC5075226 DOI: 10.5812/hepatmon.36821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/07/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate the role of CGS21680, a selective adenosine A2A receptor agonist, on a bile-duct-ligated cirrhotic liver resection model in rats. METHODS Male Wistar rats were allotted into 3 groups (n = 7 per time-point): the control group, the bile duct ligation + CGS21680 group (BDL + CGS), and the bile duct ligation group (BDL). Biliary cirrhosis had been previously induced by ligature of the common bile duct in the BDL + CGS and BDL groups. After 2 weeks, the animals underwent partial hepatectomy (50%). The BDL + CGS group received a single dose of CGS21680 15 minutes prior to hepatectomy. Blood samples were collected and analyzed. RESULTS Aspartate transaminase levels were found to be lower in the control vs BDL groups (1, 3, and 24 h) (P < 0.01) and the BDL + CGS (1 and 3 hours) (P < 0.01) and BDL + CGS vs BDL (24 hours) (P < 0.05) groups. Hepatic flow was measured and BDL showed significantly lower values at the 3, 24, and 168 h time-points compared to the control (P < 0.01) and BDL + CGS groups (P < 0.05 at 3 and 168 hours; P < 0.01 at 24 h). O2C velocity was reduced in the BDL compared to the control group (P < 0.001 at 3 hours; P < 0.01 at 24 and 168 hours) and the BDL + CGS group (P < 0.01 at 24 hours). Interleukin-6 levels were abrogated in the BDL + CGS (P < 0.05) and control (P < 0.01) groups versus BDL. Histone-bound low-molecular-weight DNA fragments in the BDL + CGS (P < 0.01) and control (P < 0.05) groups were low compared to the BDL group. CONCLUSIONS Administration of CGS21680, an adenosine receptor agonist, after the resection of bile-duct-ligated cirrhotic livers led to improved liver function, regeneration, and microcirculation.
Collapse
Affiliation(s)
- Emil Iskandarov
- Department of Hepato-biliary and Pancreas Surgery, Scientific Center of Surgery named after academician M.A.Topchubashov, Baku, Azerbaijan
| | - Pramod Kadaba Srinivasan
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Corresponding Author: Pramod Kadaba Srinivasan, Institute for Laboratory Animal Science and Experimental Surgery, University Hospital RWTH Aachen, Aachen, Germany. Tel: +49-2418089855, Fax: +49-2418082462, E-mail:
| | - Wang Xin
- Tongji Hospital, Tongji Medical College, Department of Surgery, Division of Transplantation, Wuhan, China
| | - Christian Bleilevens
- Department of Anaesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Astrit Hamza
- Department of Abdominal Surgery, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Lai Wei
- Tongji Hospital, Tongji Medical College, Department of Surgery, Division of Transplantation, Wuhan, China
| | - Koichiro Hata
- Department of Hepatobiliary, Pancreas and Transplant Surgery, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, Japan
| | - Boyukkishi Agayev
- Department of Hepato-biliary and Pancreas Surgery, Scientific Center of Surgery named after academician M.A.Topchubashov, Baku, Azerbaijan
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Curcumin and hemopressin treatment attenuates cholestasis-induced liver fibrosis in rats: role of CB1 receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:103-16. [DOI: 10.1007/s00210-015-1181-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
|