1
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
2
|
Li Y, Tang J, Li J, Du Y, Bai F, Yang L, Li X, Jin X, Wang T. ARID3A promotes the chemosensitivity of colon cancer by inhibiting AKR1C3. Cell Biol Int 2022; 46:965-975. [PMID: 35257428 DOI: 10.1002/cbin.11789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
ARID3A is upregulated in colorectal cancer and can promote the proliferation and metastasis of cancer cells. However, patients with higher level of ARID3A have a better prognosis. This study aimed to uncover the mechanism by which ARID3A benefits the prognosis of colon cancer. Our results indicated that ARID3A upregulation enhanced the chemosensitivity of colon cancer cells to 5-Fluorouracil (5-FU), whereas ARID3A downregulation inhibited the chemosensitivity of colon cancer cells to 5-FU. Through database analysis, we found that AKR1C3, a drug resistance related gene, was the target of ARID3A. Moreover, AKR1C3 was downregulated in colon cancer tissues compared to normal tissues. Next, we assessed the interaction between AKR1C3 and ARID3A, and found that ARID3A inhibited the transcription of AKR1C3, leading to the downregulation of AKR1C3 in colon cancer cells. We also verified that AKR1C3 inhibited the chemosensitivity of colon cancer cells to 5-FU. Moreover, patients with higher ratio of ARID3A to AKR1C3 had a better prognosis. This study suggested that ARID3A promoted chemosensitivity of colon cancer cells by inhibiting AKR1C3 in colon cancer. The ratio of ARID3A to AKR1C3 is a good marker to predict the prognosis of colon cancer patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yaru Du
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Fuqiang Bai
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
3
|
Jangde S, Purohit MR, Saraf F, Merchant N, Bhaskar LVKS. Dietary Phytocompounds for Colon Cancer Therapy. ONCO THERAPEUTICS 2022; 9:69-82. [DOI: 10.1615/oncotherap.2022046215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
4
|
Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, Ran W, Yang K, Huang G, Li L. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int J Oral Sci 2021; 13:38. [PMID: 34785635 PMCID: PMC8595718 DOI: 10.1038/s41368-021-00145-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
The first gene therapy product, recombinant adenovirus human p53 (rAd-p53 ), has been approved by CFDA since 2013. During these years, most of the clinical trials and the relevant basic research were carried out by Chinese oncologists. Gendicine was proved to be a safe and promising gene therapy drug for patients who suffered from head and neck squamous cell carcinoma (HNSCC). The basic therapeutic theories of gene therapy were totally different from the traditional ones, such as surgeries or radio- and chemotherapy, and the evaluation of treatment outcomes should also be changed simultaneously. However, there still existed a lot of misunderstandings about gene therapy, which resulted in improper administration, insufficient dosage calculation, and treatment cycles, and the treatment outcomes were unsatisfactory, especially for inexperienced oncologists or hospitals. Therefore, we will provide some practical guidance here on the gene therapy of rAd-p53 based on our previous research and experience, which focused on the basic theories and clinical issues, to answer the questions arising during the clinical of gene therapy and to accelerate the development of gene therapy for the benefit of patients bearing malignant tumors.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Guo
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital China Medical University, Shenyang, China
| | - Jianguo Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Moyi Sun
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wei Ran
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guilin Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Eupatilin Impacts on the Progression of Colon Cancer by Mitochondria Dysfunction and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060957. [PMID: 34203665 PMCID: PMC8232173 DOI: 10.3390/antiox10060957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most frequently diagnosed cancer types. Some colon cancer cases resist standard anticancer drugs. Therefore, many studies have focused on developing therapeutic supplements using natural products with low side effects and broad physiological activity. Eupatilin is a flavonoid that is mainly extracted from artemisia and promotes apoptosis in numerous cancer types. However, since the current understanding of its physiological mechanisms on colon cancer cells is insufficient, we investigated how eupatilin affects the growth of two colon cancer cell lines, namely HCT116 and HT29. Our results showed that eupatilin inhibits cell viability and induces apoptosis accompanied by mitochondrial depolarization. It also induces oxidative stress in colon cancer cells and regulates the expression of proteins involved in the endoplasmic reticulum stress and autophagic process. Moreover, eupatilin may target the PI3K/AKT and mitogen-activated protein kinase (MAPK) signaling pathways in colon cancer cells. It also prevents colon cancer cell invasion. Furthermore, eupatilin has a synergistic effect with 5-fluorouracil (5-FU; a standard anticancer drug) on 5-FU-resistant HCT116 cells. These results suggest that eupatilin can be developed as an adjuvant to enhance traditional anticancer drugs in colon cancer.
Collapse
|
6
|
Gao J, Hou D, Hu P, Mao G. Curcumol increases the sensitivity of colon cancer to 5-FU by regulating Wnt/β-catenin signaling. Transl Cancer Res 2021; 10:2437-2450. [PMID: 35116559 PMCID: PMC8798486 DOI: 10.21037/tcr-21-689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Background 5-fluorouracil (5-FU) resistance is the leading cause of treatment failure in colon cancer. Combination therapy is an effective strategy to inhibit cancer cells and prevent drug resistance. Therefore, we studied the antitumor effect of curcumol alone or combined with 5-FU on human colon cancer drug-resistant cells. Methods The 5-FU resistant HCT116 cell line (HCT116/5-FU) was established by repeated exposure to gradually increasing concentrations of 5-FU; Cell viability was measured by cell counting kit-8 (CCK-8); apoptosis rate of HCT116 cells was detected using Annexin V-fluorescein isothiocyanate (FITC) assay kit; cell proliferation and invasion were detected using colony formation assays, wound healing assay and transwell invasion assays; activity of transplanted tumor in vivo in specific pathogen free (SPF) BALB/c nude mice (6 weeks old, male) was monitored by bioluminescence imaging, immunohistochemistry and western blot analysis. Results Our study showed the potent antitumor effect of curcumol by induction of apoptosis, inhibition of proliferation, invasion, migration, and improvement of the therapeutic efficacy of 5-FU toward human colon cancer HCT116 cells. From our results, curcumol could chemosensitize 5-FU-resistant HCT116 cells. The combination of curcumol and 5-FU exerted a synergistic inhibitory effect on the induction of apoptosis. Also, this combination inhibited the proliferation, invasion, and migration of both chemo-resistant and sensitive cells. Curcumol treatment decreased multidrug resistance-associated protein 2 (MRP-2), P-glycoprotein (P-gp), survivin, and β-catenin expression, which correlated with multidrug resistance (MDR) and the target genes of Wnt/β-catenin. It significantly increased the p-β-catenin level and Bad/Bcl-2 ratio in HCT116/5-FU cells compared with 5-FU treatment. In vivo, curcumol significantly inhibited the growth of transplanted tumors and the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF) in colon cancer cells. Conclusions Curcumol as a potential chemotherapeutic agent combined with 5-FU can overcome colon cancer resistance.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Daorong Hou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Guoxin Mao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Cui YJ, Ma CC, Zhang CM, Tang LQ, Liu ZP. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur J Med Chem 2020; 187:111968. [DOI: 10.1016/j.ejmech.2019.111968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
9
|
Liu ML, Zang F, Zhang SJ. RBCK1 contributes to chemoresistance and stemness in colorectal cancer (CRC). Biomed Pharmacother 2019; 118:109250. [DOI: 10.1016/j.biopha.2019.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
10
|
Satari A, Amini SA, Raeisi E, Lemoigne Y, Heidarian E. Synergetic Impact of Combined 5-Fluorouracil and Rutin on Apoptosis in PC3 Cancer Cells through the Modulation of P53 Gene Expression. Adv Pharm Bull 2019; 9:462-469. [PMID: 31592435 PMCID: PMC6773939 DOI: 10.15171/apb.2019.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose: Prostate cancer is as far the most prevalent male cancer. Rutin (a glycoside from
quercetin flavonoid) displays antioxidant activity leading to cell apoptosis. Combined effects of
rutin with the widely used anti-cancer drug, 5-fluorouracil (5-FU), on prostate cancer cell line
(PC3) was investigated herein.
Methods: Different concentrations of combined 5-FU and rutin were applied to PC3 cells
compared to separate treatment for 48 hours. Cell viability, as well p53 gene expression
respectively were assessed by MTT assay and real-time quantitative polymerase chain reaction
(qPCR). Changes of Bcl-2 signal protein and apoptosis were determined using western blot
and flow cytometry procedures, respectively. Clonogenic assay was used to colony counts
assessment.
Results: 50% inhibitory concentration (IC50) of separate cell treatment with either rutin and
5-FU respectively were 900 μM and 3Mm, while combination index (CI) of combined 5-FU
/rutin application reached a level of synergistic effects (0.33). Combination of 5-FU/rutin
enhanced apoptosis and p53 gene expression in PC3 cells. PC3 cell colony counts and Bcl-2
signaling protein were decreased by 5-FU/rutin combination.
Conclusion: Synergistic effects of 5-FU/rutin combination on PC3 cells line enhanced apoptosis,
p53 gene expression, and down-regulation of Bcl-2 protein, compared to control separate
application. 5-FU/rutin combination does seem an interesting therapeutic pathway to be further
investigated.
Collapse
Affiliation(s)
- Atefeh Satari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayed Asadollah Amini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Raeisi
- Department of Medical Physics & Radiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol Lett 2019; 18:487-498. [PMID: 31289520 PMCID: PMC6540497 DOI: 10.3892/ol.2019.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among men and women. Chemo-resistance, adverse effects and disease recurrence are major challenges in the development of effective cancer therapeutics. Substantial literature on this subject highlights that populations consuming diets rich in fibers, fruits and vegetables have a significantly reduced incidence rate of CRC. This chemo-preventive effect is primarily associated with the presence of phytochemicals in the dietary components. Plant-derived chemical agents act as a prominent source of novel compounds for drug discovery. Phytochemicals have been the focus of an increasing number of studies due to their ability to modulate carcinogenic processes through the alteration of multiple cancer cell survival pathways. Despite promising results from experimental studies, only a limited number of phytochemicals have entered into clinical trials. The purpose of the current review is to compile previously published pre-clinical and clinical evidence of phytochemicals in cases of CRC. A PubMed, Google Scholar and Science Direct search was performed for relevant articles published between 2008-2018 using the following key terms: 'Phytochemicals with colorectal cancers', 'apoptosis', 'cell cycle', 'reactive oxygen species' and 'clinical anticancer activities'. The present review may aid in identifying the most investigated phytochemicals in CRC cells, and due to the limited number of studies that make it from the laboratory bench to clinical trial stage, may provide a novel foundation for future research.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Dejun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Sheikh Abdul Saeed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
12
|
He WT, Zhu YH, Zhang T, Abulimiti P, Zeng FY, Zhang LP, Luo LJ, Xie XM, Zhang HL. Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-regulating Heat Shock Protein 27 and P-Glycoprotein. Chin J Integr Med 2018; 25:416-424. [PMID: 30484020 DOI: 10.1007/s11655-018-2997-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the potential mechanisms that curcumin reverses 5-fluorouracil (5-FU) multidrug resistance (MDR). METHODS Cell growth and the inhibitory rate of curcumin (2-25 μg/mL) and/or 5-FU (0.05-1000 μg/mL) on human colon cancer HCT-8 and HCT-8/5-FU (5-FU-resistant cell line) were determined using cell counting kit-8 (CCK-8) assay. Apoptosis and cell cycle after 5-FU and/or curcumin treatment were detected by flow cytometry (FCM) and transmission electron microscopy (TEM). The expression of the multidrug resistance related factors p-glycoprotein (P-gp) and heat shock protein 27 (HSP-27) genes and proteins were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting (WB), respectively. RESULTS The inhibitory rate of curcumin or 5-FU on HCT-8 and HCT-8/5-FU cells proliferation at exponential phase were in a dosedependent manner, HCT-8 cell line was more sensitive to curcumin or 5-FU when compared the inhibitory rate of HCT-8/5-FU. The 50% inhibitory concentration (IC50) of combination 5-FU and curcumin (4.0 μg/mL) in HCT-8/5-FU was calculated as 179.26 μg/mL, with reversal fold of 1.85. Another IC50 of combination 5-FU and curcumin (5.5 μg/mL) in HCT-8/5-FU was calculated as 89.25 μg/mL, with reversal fold of 3.71. Synergistic effect of 5-FU and curcumin on HCT-8 and HCT-8/5-FU cells were found. The cell cycle analysis performed by FCM showed that HCT-8 and HCT-8/5-FU cells mostly accumulated at G0/G1 phase, which suggested a synergistic effect of curcumin and 5-FU to induce apoptosis. FCM analysis found that the percentage of apoptosis of cells treated with curcumin, 5-FU and their combination were significantly increased compared to the control group (P<0.05), and the percentage of apoptosis of the combination groups were slightly higher than other groups (P<0.05). The mRNA levels of P-gp (0.28±0.02) and HSP-27 (0.28±0.09) in HCT-8/5-FU cells treated with combination drugs were lower than cells treated with 5-FU alone (P-gp, 0.48±0.07, P=0.009; HSP-27, 0.57±0.10, P=0.007). The protein levels of P-gp (0.25±0.06) and HSP-27 (0.09±0.02) in HCT-8/5-FU cells treated with combination drugs were decreased when compared to 5-FU alone (P-gp, 0.46±0.02, P=0.005; HSP-27, 0.43±0.01, P=0.000). CONCLUSIONS Curcumin can inhibit the proliferation of human colon cancer cells. Curcumin has the ability of reversal effects on the multidrug resistance of human colon cancer cells lines HCT-8/5-FU. Down-regulation of P-gp and HSP-27 may be the mechanism of curcumin reversing the drug resistance of HCT-8/5-FU to 5-FU.
Collapse
Affiliation(s)
- Wen-Ting He
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Yan-Hua Zhu
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Tong Zhang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Patima Abulimiti
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Fan-Ye Zeng
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Li-Ping Zhang
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Ling-Juan Luo
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Xin-Mei Xie
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Hong-Liang Zhang
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China.
| |
Collapse
|
13
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
14
|
Zhang M, Zhou N, Yuan P, Su Y, Shao M, Chi C. Graphene oxide and adenosine triphosphate as a source for functionalized carbon dots with applications in pH-triggered drug delivery and cell imaging. RSC Adv 2017. [DOI: 10.1039/c6ra27887f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A folate-functionalized carbon dot-based nanocarrier system has been successfully synthesized for cancer cell targeted drug delivery.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Ping Yuan
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yutian Su
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Maoni Shao
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Cheng Chi
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|