1
|
Comparative study on alleviating effect of kiwi berry (Actinidia arguta) polysaccharide and polyphenol extracts on constipated mice. Food Res Int 2022; 162:112037. [DOI: 10.1016/j.foodres.2022.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
|
2
|
Zhang S, Wang R, Li D, Zhao L, Zhu L. Role of gut microbiota in functional constipation. Gastroenterol Rep (Oxf) 2021; 9:392-401. [PMID: 34733524 PMCID: PMC8560038 DOI: 10.1093/gastro/goab035] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 07/18/2021] [Indexed: 12/19/2022] Open
Abstract
Functional constipation (FC) is common, yet the etiology is not clear. Accumulating evidence suggests an association between FC and abnormal gut microbiota. The relationship between the gut microbiota and the gut transit is likely bidirectional. This review summarizes the current evidence regarding the impact of gut microbiota on the pathogenesis of FC. By modulating the colonic motility, secretion, and absorption, gut microbiota may contribute to the development of FC through microbial metabolic activities involving bile acids, short-chain fatty acids, 5-hydroxytryptamine, and methane. In support of the key roles of the gut microbiota in FC, treatment with probiotics, prebiotics, synbiotics, and traditional Chinese medicine often result in compositional and functional changes in the gut microbiota. Further studies on the pathogenesis of FC and the therapeutic mechanism of microecological agents will provide a knowledge base for better management of FC.
Collapse
Affiliation(s)
- Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Ruixin Wang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
3
|
Huang J, Li S, Wang Q, Guan X, Qian L, Li J, Zheng Y, Lin B. Pediococcus pentosaceus B49 from human colostrum ameliorates constipation in mice. Food Funct 2021; 11:5607-5620. [PMID: 32525185 DOI: 10.1039/d0fo00208a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a prevalent and burdensome gastrointestinal (GI) disorder that seriously affects the quality of human life. This study evaluated the effects of the P. pentosaceus B49 (from human colostrum) on loperamide (Lop)-induced constipation in mice. Mice were given P. pentosaceus B49 (5 × 109 CFU or 5 × 1010 CFU) by gavage daily for 14 days. The result shows that P. pentosaceus B49 treatment relieved constipation in mice by shortening the defecation time, increasing the GI transit rate and stool production. Compared with the constipation control group, the P. pentosaceus B49-treated groups showed decreased serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide and nitric oxide), increased serum levels of excitatory neurotransmitters (acetylcholinesterase, motilin, and gastrin), and elevated cecal concentration of short chain fatty acids (SCFAs). Analysis of cecal microbiota reveals that P. pentosaceus B49 was colonized in the intestine of constipated mice, and altered the cecal microbiota by increasing beneficial SCFAs-producing bacteria (i.e., Lactobacillus, Ruminococcaceae_UCG-014, and Bacteroidales_S24-7) and decreasing potential pathogenic bacteria (i.e., Staphylococcus and Helicobacter). Moreover, transcriptome analysis of the colon tissue shows that P. pentosaceus B49 partly normalized the expression of genes related to GI peristalsis (i.e., Ache, Chrm2, Slc18a3, Grp, and Vip), water and electrolyte absorption and transport (i.e., Aqp4, Aqp8, and Atp12a), while down-regulating the expression of pro-inflammatory and pro-oncogenic genes (i.e., Lbp, Lgals2, Bcl2, Bcl2l15, Gsdmc2, and Olfm4) in constipated mice. Our findings indicate that P. pentosaceus B49 effectively relieves constipation in mice and is a promising candidate for treating constipation.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Xuefang Guan
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Lei Qian
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Jie Li
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| |
Collapse
|
4
|
Numata T, Sato-Numata K, Okada Y. Herbal components of Japanese Kampo medicines exert laxative actions in colonic epithelium cells via activation of BK and CFTR channels. Sci Rep 2019; 9:15554. [PMID: 31664151 PMCID: PMC6820752 DOI: 10.1038/s41598-019-52171-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/12/2019] [Indexed: 11/20/2022] Open
Abstract
Japanese Kampo medicines Junchoto and Mashiningan are mixtures of numerous herbal plant extracts and empirically known to exert laxative actions by stimulating fluid secretion in the colonic epithelium. However, it is unknown which and how the herbal components of these crude Kampo drugs are effective to stimulate ion effluxes causing fluid secretion. Here, we selected four herbal components of Junchoto and Mashiningan, Mashinin (MSN), Kyonin (KYN), Tonin (TON), and Daio (DIO), which are putatively laxatives, and examined their effects on the ion channel activity of human colonic epithelial Caco-2 cells. Patch clamp analyses revealed that MSN activated whole-cell current characteristics of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, whereas KYN, TON, and DIO activated the large-conductance and voltage-activated K+ (BK) channel. Furthermore, electronic cell sizing showed that MSN induced secretory volume decrease (SVD) sensitivity to a CFTR blocker, whereas TON, KYN, and DIO induced SVD sensitivity to a K+ channel blocker. In conclusion, MSN and TON, KYN, and DIO promote fluid secretion from colonic epithelial cells by activating CFTR and BK channels. Thus, Japanese Kampo medicines, Junchoto and Mashiningan, exert anti-constipation actions by inducing KCl efflux through the combined actions of CFTR- and BK-stimulating herbal components.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kaori Sato-Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Yasunobu Okada
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| |
Collapse
|