1
|
Meyer T, Anders M, Pietzcker AZ, Doyley M, Görner S, Böhm O, Engl P, Safraou Y, Braun J, Sack I, Tzschätzsch H. Rapid wideband characterization of viscoelastic material properties by Bessel function-based time harmonic ultrasound elastography (B-THE). J Mech Behav Biomed Mater 2024; 160:106746. [PMID: 39303417 DOI: 10.1016/j.jmbbm.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Elastography is an emerging diagnostic technique that uses conventional imaging modalities such as sonography or magnetic resonance imaging to quantify tissue stiffness. However, different elastography methods provide different stiffness values, which require calibration using well-characterized phantoms or tissue samples. A comprehensive, fast, and cost-effective elastography technique for phantoms or tissue samples is still lacking. Therefore, we propose ultrasound Bessel-fit-based time harmonic elastography (B-THE) as a novel tool to provide rapid feedback on stiffness-related shear wave speed (SWS) and viscosity-related wave penetration rate (PR) over a wide range of harmonic vibration frequencies. The method relies on external induction and B-mode capture of cylindrical shear waves that satisfy the Bessel wave equation for efficient fit-based parameter recovery. B-THE was demonstrated in polyacrylamide phantoms in the frequency range of 20-200 Hz and was cross-validated by magnetic resonance elastography (MRE) using clinical 3-T MRI and compact 0.5-T tabletop MRI scanners. Frequency-independent material parameters were derived from rheological models and validated by numerical simulations. B-THE quantified frequency-resolved SWS and PR 13 to 176 times faster than more expensive clinical MRE and tabletop MRE and have a good accuracy (relative deviation to reference: 6 %, 10 % and 4 % respectively). Simulations of liver-mimicking material phantoms showed that a simultaneous fit of SWS and PR based on the fractional Maxwell rheological model outperformed a fit on PR solely. B-THE provides a comprehensive and fast elastography technique for the quantitative characterization of the viscoelastic behavior of soft tissue mimicking materials.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Anders
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton Z Pietzcker
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marvin Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Steffen Görner
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Böhm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pascal Engl
- Department of Physics, Sensor and Ultrasound Technology, University of Applied Sciences Merseburg, Merseburg, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Zhang X, Li G, Lin H, Wong VWS, Wong GLH. Noninvasive evaluation of liver fibrosis in MASLD—Imaging/elastography based. METABOLIC STEATOTIC LIVER DISEASE 2024:151-166. [DOI: 10.1016/b978-0-323-99649-5.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Dong B, Duan Y, Wang H, Chen Y, Lyu G. Performance of two-dimensional shear wave elastography for detecting advanced liver fibrosis and cirrhosis in patients with biliary atresia: a systematic review and meta-analysis. Pediatr Radiol 2023; 53:2642-2650. [PMID: 37917168 DOI: 10.1007/s00247-023-05796-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Two-dimensional shear wave elastography (2D-SWE) has been proposed for detecting liver fibrosis in biliary atresia. OBJECTIVES To assess the performance of 2D-SWE for detecting advanced liver fibrosis and cirrhosis in patients with biliary atresia. MATERIALS AND METHODS Five electronic databases were searched to identify studies investigating the performance of 2D-SWE for diagnosing liver fibrosis in biliary atresia in children. We constructed the summary receiver operating characteristic (SROC) curves of 2D-SWE for detecting advanced liver fibrosis and cirrhosis, and then calculated the area under the SROC curves (AUROCs). RESULTS Six studies with 470 patients (ages 55 days to 6.6 years) were included. The median correlation coefficient of 2D-SWE with pathological liver fibrosis stages was 0.779 (range: 0.443‒0.813). The summary AUROCs for advanced liver fibrosis and cirrhosis were 0.929 and 0.883, respectively. The summary sensitivity and specificity of 2D-SWE for advanced liver fibrosis were 88% (95% confidence interval [CI]: 80‒94%) and 85% (95% CI: 77‒91%) with I values of 0% and 45.6%, respectively, and for cirrhosis were 80% (95% CI: 72‒87%) and 82% (95% CI: 77‒86%) with I values of 12.9% and 0%, respectively. The diagnostic odds ratio (DOR) of 2D-SWE for advanced liver fibrosis and cirrhosis were 40.3 (95% CI: 18.2‒89.4) and 18.9 (95% CI: 11.2‒31.7), respectively. For preoperative detection of cirrhosis, the pooled AUROC, sensitivity, specificity, and DOR based on the four 2D-SWE studies were 0.877, 79% (95% CI: 71‒86%), 82% (95% CI: 77‒86%), and 17.58 (95% CI: 10.35‒29.85), respectively. CONCLUSIONS Results show that 2D-SWE has potential as a non-invasive tool for detecting advanced liver fibrosis and cirrhosis in patients with biliary atresia.
Collapse
Affiliation(s)
- Bingtian Dong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaming Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yongjian Chen
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
4
|
Kumar A, Kempski Leadingham KM, Kerensky MJ, Sankar S, Thakor NV, Manbachi A. Visualizing tactile feedback: an overview of current technologies with a focus on ultrasound elastography. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1238129. [PMID: 37854637 PMCID: PMC10579802 DOI: 10.3389/fmedt.2023.1238129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Tissue elasticity remains an essential biomarker of health and is indicative of irregularities such as tumors or infection. The timely detection of such abnormalities is crucial for the prevention of disease progression and complications that arise from late-stage illnesses. However, at both the bedside and the operating table, there is a distinct lack of tactile feedback for deep-seated tissue. As surgical techniques advance toward remote or minimally invasive options to reduce infection risk and hasten healing time, surgeons lose the ability to manually palpate tissue. Furthermore, palpation of deep structures results in decreased accuracy, with the additional barrier of needing years of experience for adequate confidence of diagnoses. This review delves into the current modalities used to fulfill the clinical need of quantifying physical touch. It covers research efforts involving tactile sensing for remote or minimally invasive surgeries, as well as the potential of ultrasound elastography to further this field with non-invasive real-time imaging of the organ's biomechanical properties. Elastography monitors tissue response to acoustic or mechanical energy and reconstructs an image representative of the elastic profile in the region of interest. This intuitive visualization of tissue elasticity surpasses the tactile information provided by sensors currently used to augment or supplement manual palpation. Focusing on common ultrasound elastography modalities, we evaluate various sensing mechanisms used for measuring tactile information and describe their emerging use in clinical settings where palpation is insufficient or restricted. With the ongoing advancements in ultrasound technology, particularly the emergence of micromachined ultrasound transducers, these devices hold great potential in facilitating early detection of tissue abnormalities and providing an objective measure of patient health.
Collapse
Affiliation(s)
- Avisha Kumar
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
- HEPIUS Innovation Lab, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kelley M. Kempski Leadingham
- HEPIUS Innovation Lab, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Max J. Kerensky
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
- HEPIUS Innovation Lab, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sriramana Sankar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nitish V. Thakor
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amir Manbachi
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
- HEPIUS Innovation Lab, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Garcovich M, Paratore M, Ainora ME, Riccardi L, Pompili M, Gasbarrini A, Zocco MA. Shear Wave Dispersion in Chronic Liver Disease: From Physical Principles to Clinical Usefulness. J Pers Med 2023; 13:945. [PMID: 37373934 PMCID: PMC10305680 DOI: 10.3390/jpm13060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new applications in ultrasound (US) imaging in recent years has strengthened the role of this imaging technique in the management of different pathologies, particularly in the setting of liver disease. Improved B-mode imaging (3D and 4D), contrast-enhanced US (CEUS) and especially US-based elastography techniques have created the concept of multiparametric ultrasound (MP-US), a term borrowed from radiological sectional imaging. Among the new elastography techniques, shear wave dispersion is a newly developed imaging technology which enables the assessment of the shear waves' dispersion slope. The analysis of the dispersion qualities of shear waves might be indirectly related to the tissue viscosity, thus providing biomechanical information concerning the pathologic state of the liver such as necroinflammation. Some of the most recent US devices have been embedded with software that evaluate the dispersion of shear waves/liver viscosity. In this review, the feasibility and the clinical applications of liver viscosity are reviewed based on the preliminary findings of both animal and human studies.
Collapse
Affiliation(s)
- Matteo Garcovich
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
| | - Mattia Paratore
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
| | - Maria Elena Ainora
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
| | - Laura Riccardi
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
| | - Maurizio Pompili
- Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
- Medicina Interna e del Trapianto di Fegato, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
- Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.G.)
- Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
6
|
Karadeniz H, Cerit M, Güler AA, Salman RB, Satış H, Yıldırım D, Göker B, Küçük H, Öztürk MA, Tufan A. Lacrimal gland ultrasonography and elastography as a diagnostic and activity tool for primary Sjögren's syndrome. Int J Rheum Dis 2023. [PMID: 37137730 DOI: 10.1111/1756-185x.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/08/2023] [Accepted: 04/08/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE To investigate the effectiveness of 2-dimensional shear wave elastography (2D-SWE) in the assessment of lacrimal gland involvement in primary Sjögren's syndrome (pSS) and to determine the association between ultrasonographic findings and clinical activity measures. METHOD Forty-six patients who fulfilled the 2016 American College of Rheumatology/European League Against Rheumatism (EULAR) classification criteria of pSS and 23 age and gender-matched healthy control subjects were enrolled. Clinical, laboratory and labial biopsy histopathologic characteristics of patients were recorded. Disease activity of pSS and severity of ocular dryness were evaluated with EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI) and Ocular Surface Disease Index (OSDI), respectively. Parotid and lacrimal gland architectures were assessed by B-mode ultrasound and 2D-SWE techniques. RESULTS Mean shear wave elastography measurements, reflecting loss of elasticity, were remarkably higher in pSS patients compared to healthy subjects both in the lacrimal and parotid glands (8.99 ± 3.45 vs 3.68 ± 1.76 in lacrimal glands and 14.14 ± 4.39 vs 7.83 ± 1.69 in parotid glands, all P < 0.001). Shear wave elasticity of lacrimal glands was correlated with OSDI and ESSPRI scores (r = 0.69; P = 0.001 and r = 0.58; P = 0.001, respectively). A cut-off value of 4.6 kPa in the lacrimal gland elasticity discriminated pSS patients from healthy subjects with a sensitivity of 94% and specificity of 87%. CONCLUSION Results of our study suggest that lacrimal glands lose elasticity in patients with pSS and the assessment of elasticity with 2D-SWE might help to classify patients as having pSS. Further studies are needed to validate the diagnostic utility of lacrimal 2D-SWE by including diseases other than pSS.
Collapse
Affiliation(s)
- Hazan Karadeniz
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mahinur Cerit
- Department of Radiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | - Hasan Satış
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Derya Yıldırım
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Berna Göker
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Hamit Küçük
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Akif Öztürk
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Abdurrahman Tufan
- Department of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Sun J, Li N, Jian W, Cao D, Yang J, Chen M. Clinical application of cervical shear wave elastography in predicting the risk of preterm delivery in DCDA twin pregnancy. BMC Pregnancy Childbirth 2022; 22:202. [PMID: 35287624 PMCID: PMC8919632 DOI: 10.1186/s12884-022-04526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Limited studies have used cervical shear wave elastography (SWE) as a tool to investigate the predictive effect of cervical changes on preterm delivery (PTD) in twin pregnancy. This study is aimed to predict the risk of PTD by cervical SWE in dichorionic diamniotic (DCDA) twin pregnancy. Methods A total of 138 women with dichorionic diamniotic (DCDA) twins were included in this prospective study. The mean SWE value of the cervix was obtained from the inner, middle and outer regions of the anterior and posterior cervical lips using a transvaginal ultrasound transducer and measured consecutively across three different gestations (20–23+ 6 weeks, 24–27+ 6 weeks, and 28–32 weeks). Follow-up was performed on all subjects, and we compared the mean SWE value between the PTD and term delivery (TD) groups. Results A total of 1656 cervical mean SWE data were collected for analysis. Among the 138 twin pregnant women, only 92 women completed the three elastography examinations; PTD occurred in 58.7% (54/92), and TD in 41.3% (38/92). The mean (SD) maternal age was 33.1 ± 4.1 years, and the mean (SD) body mass index was 21.1 ± 2.6 kg/m2. As gestational age increased, the mean SWE value of each part of the cervix decreased. The cervical mean SWE value was lower in the preterm group than in the term group in all three gestations, except for the anterior cervical lip at 28–32 weeks. Receiver operating characteristics (ROC) curves showed the sensitivity of mean SWE value of the anterior cervical lip was 83.3% (95% CI, 70.7–92.1) with a specificity of 57.9% (95% CI, 40.8–73.7) for predicting PTD at a cutoff value of 7.94 kPa. The positive likelihood ratio (LR+) was 1.67 (95% CI, 1.19–2.34), and the negative likelihood ratio (LR–) was 0.33 (95% CI, 0.17–0.64). Conclusions There is a significant negative correlation between cervical stiffness and gestational age in DCDA twin pregnancy. SWE is a potential tool for assessing cervical stiffness and predicting PTD in DCDA twin pregnancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04526-0.
Collapse
Affiliation(s)
- Jimei Sun
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Nan Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Wei Jian
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Dingya Cao
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Junying Yang
- Global UIS Academic Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China.
| |
Collapse
|
8
|
Dayavansha EGS, Gross GJ, Ehrman MC, Grimm PD, Mast TD. Reconstruction of shear wave speed in tissue-mimicking phantoms from aliased pulse-echo imaging of high-frequency wavefields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4128. [PMID: 34972294 DOI: 10.1121/10.0008901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Quantitative elasticity estimation in medical and industrial applications may benefit from advancements in reconstruction of shear wave speed with enhanced resolution. Here, shear wave speed is reconstructed from pulse-echo ultrasound imaging of elastic waves induced by high-frequency (>400 Hz), time-harmonic mechanical excitation. Particle displacement in shear wavefields is mapped from measured interframe phase differences with compensation for timing of multiple scan lines, then processed by spatial Fourier analysis to estimate the predominant wave speed and analyzed by algebraic wavefield inversion to reconstruct wave speed maps. Reconstructions of shear wave speed from simulated wavefields illustrate the accuracy and spatial resolution available with both methods, as functions of signal-to-noise ratio and sizes of windows used for Fourier analysis or wavefield smoothing. The methods are applied to shear wavefields with frequencies up to six times the Nyquist rate, thus extending the frequency range measurable by a given imaging system. Wave speed measurements in tissue-mimicking phantoms are compared with supersonic shear imaging and mechanical tensile testing, demonstrating feasibility of the wavefield measurement and wave speed reconstruction methods employed.
Collapse
Affiliation(s)
| | - Gary J Gross
- The Procter & Gamble Company, Mason, Ohio 45040, USA
| | | | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
9
|
Lesmana CRA, Paramitha MS, Hasan I, Sulaiman AS, Gani RA. Portal Hypertension in Non-alcoholic Fatty Liver Disease in the Era of Non-invasive Assessment. EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/21-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the emerging global health problems due to an increase of burden worldwide. It has been known that NAFLD is strongly associated with metabolic syndrome. The progression of NAFLD is a complex and multifactorial mechanism. Portal hypertension is still the main key in liver disease progression management. In NAFLD, portal hypertension might occur in the non-cirrhotic condition. Hepatic vein pressure gradient measurement has been considered as the gold standard for portal pressure assessment; however, due to its invasiveness and the need for a high-expertise centre, it is considered a non-practical measurement tool in clinical practice. Many other non-invasive parameters have been developed to replace the invasive measurement; however, there are still some limitations with regard to the technical issue, patient’s condition, and its accuracy in the different stages of the disease. Therefore, the authors review portal hypertension related to the clinical course of NAFLD, and the development of portal pressure evaluation in patients with NAFLD.
Collapse
Affiliation(s)
- Cosmas Rinaldi Adithya Lesmana
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Jakarta, Indonesia; Digestive Disease & GI Oncology Center, Medistra Hospital, Jakarta, Indonesia
| | - Maria Satya Paramitha
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Irsan Hasan
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Andri Sanityoso Sulaiman
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
10
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
11
|
Abstract
Early diagnosis of hepatic fibrosis (HF) is pivotal for management to cease progression to cirrhosis and hepatocellular carcinoma. HF is the telltale sign of chronic liver disease, and confirmed by liver biopsy, which is an invasive technique and inclined to sampling errors. The morphologic parameters of cirrhosis are assessed on conventional imaging such as on ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI). Newer imaging modalities such as magnetic resonance elastography and US elastography are reliable and accurate. More research studies on novel imaging modalities such as MRI with diffusion weighted imaging, enhancement by hepatobiliary contrast agents, and CT using perfusion are essential for earlier diagnosis, surveillance and accurate management. The purpose of this article is to discuss non-invasive CT, MRI, and US imaging modalities for diagnosis and stratify HF.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Neuroradiology, The University of Texas Health Science Center, Houston, TX.
| | - Ajaykumar C Morani
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Priya Bhosale
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Garbuzenko DV, Arefyev NO. Primary prevention of bleeding from esophageal varices in patients with liver cirrhosis: An update and review of the literature. J Evid Based Med 2020; 13:313-324. [PMID: 33037792 DOI: 10.1111/jebm.12407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
All patients with liver cirrhosis and portal hypertension should be stratified by risk groups to individualize different therapeutic strategies to increase the effectiveness of treatment. In this regard, the development of primary prophylaxis of variceal bleeding and its management according to the severity of portal hypertension may be promising. This paper is to describe the modern principles of primary prophylaxis of esophageal variceal bleeding in patients with liver cirrhosis. The PubMed and EMbase databases, Web of Science, Google Scholar, and the Cochrane Database of Systematic Reviews were used to search for relevant publications from 1999 to 2019. The results suggested that depending on the severity of portal hypertension, patients with cirrhosis should be divided into those who need preprimary prophylaxis, which aims to prevent the formation of esophageal varices, and those who require measures that aim to prevent esophageal variceal bleeding. In subclinical portal hypertension, therapy should be etiological and pathogenetic. Cirrhosis with clinically significant portal hypertension should receive nonselective β-blockers if they have small esophageal varices and risk factors for variceal bleeding. Nonselective β-blockers are the first-line drugs for the primary prevention of bleeding from medium to large-sized esophageal varices. Endoscopic band ligation is indicated for the patients who are intolerant to nonselective β-blockers or in the case of contraindications to pharmacological therapy. In summary, the stratification of cirrhotic patients by the severity of portal hypertension and an individual approach to the choice of treatment may increase the effectiveness of therapy as well as improve survival rate of these patients.
Collapse
Affiliation(s)
| | - Nikolay Olegovich Arefyev
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
13
|
Lu XJ, Yang XJ, Sun JY, Zhang X, Yuan ZX, Li XH. FibroBox: a novel noninvasive tool for predicting significant liver fibrosis and cirrhosis in HBV infected patients. Biomark Res 2020; 8:48. [PMID: 33005419 PMCID: PMC7520974 DOI: 10.1186/s40364-020-00215-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background China is a highly endemic area of chronic hepatitis B (CHB). The accuracy of existed noninvasive biomarkers including TE, APRI and FIB-4 for staging fibrosis is not high enough in Chinese cohort. Methods Using liver biopsy as a gold standard, a novel noninvasive indicator was developed using laboratory tests, ultrasound measurements and liver stiffness measurements with machine learning techniques to predict significant fibrosis and cirrhosis in CHB patients in north and east part of China. We retrospectively evaluated the diagnostic performance of the novel indicator named FibroBox, Fibroscan, aspartate transaminase-to-platelet ratio index (APRI), and fibrosis-4 index (FIB-4) in CHB patients from Jilin and Huai’an (training sets) and also in Anhui and Beijing cohorts (validation sets). Results Of 1289 eligible HBV patients who had liver histological data, 63.2% had significant fibrosis and 22.5% had cirrhosis. In LASSO logistic regression and filter methods, fibroscan results, platelet count, alanine transaminase (ALT), prothrombin time (PT), type III procollagen aminoterminal peptide (PIIINP), type IV collagen, laminin, hyaluronic acid (HA) and diameter of spleen vein were finally selected as input variables in FibroBox. Consequently, FibroBox was developed of which the area under the receiver operating characteristic curve (AUROC) was significantly higher than that of TE, APRI and FIB-4 to predicting significant fibrosis and cirrhosis. In the Anhui and Beijing cohort, the AUROC of FibroBox was 0.88 (95% CI, 0.72–0.82) and 0.87 (95% CI, 0.83–0.91) for significant fibrosis and 0.87 (95% CI, 0.82–0.92) and 0.90 (95% CI, 0.85–0.94) for cirrhosis. In the validation cohorts, FibroBox accurately diagnosed 81% of significant fibrosis and 84% of cirrhosis. Conclusions FibroBox has a better performance in predicting liver fibrosis in Chinese cohorts with CHB, which may serve as a feasible alternative to liver biopsy.
Collapse
Affiliation(s)
- Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiao-Jun Yang
- Department of Infection, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jing-Yu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, China
| | - Zhao-Xin Yuan
- Changchun Medical College, Changchun, Jilin China.,Department of Hepatology, Hepatobiliary Disease Hospital of Jilin Province, Changchun, Jilin China
| | - Xiu-Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lee J, Kang HJ, Yoon JH, Lee JM. Ultrasound-guided transient elastography and two-dimensional shear wave elastography for assessment of liver fibrosis: emphasis on technical success and reliable measurements. Ultrasonography 2020; 40:217-227. [PMID: 32660200 PMCID: PMC7994746 DOI: 10.14366/usg.20036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose This study investigated whether the use of ultrasound (US) guidance in transient elastography (TE) improved the technical success and reliability of liver stiffness (LS) measurements and whether 2-dimensional (2D) shear wave elastography (SWE) provided reliable LS measurements if TE measurements failed. Methods In this prospective study, 292 participants (male:female, 189:103; median age, 60 years) with chronic liver disease (CLD) were enrolled. LS was measured via the consecutive use of conventional TE, 2D-SWE, and US-guided TE. The technical success rates and reliable LS measurement rates of the three elastography techniques were compared. The risk factors for TE failure were assessed through univariate and multivariate logistic regression models. Results US-guided TE was associated with a higher technical success rate (281 of 292, 96.2%) and a higher reliable measurement rate (266 of 292, 91.1%) than conventional TE (technical success: 256 of 292, 87.7%; reliable measurements: 231 of 292, 79.1%; P<0.001 for both). In participants for whom conventional TE failed, 2D-SWE provided high rates of technical success (36 of 36, 100%) and reliable measurements (30 of 36, 83.3%). TE failure was associated with female sex (odds ratio [OR], 5.85; 95% confidence interval [CI], 1.30 to 26.40), severe reverberation artifacts (OR, 8.79; 95% CI, 3.93 to 19.69), and high skin-to-liver capsule depth (OR, 1.23; 95% CI, 1.09 to 1.39). Conclusion US guidance in TE improved the technical success and reliable measurement rates in the assessment of LS in patients with CLD. In participants for whom TE failed, subsequent 2D-SWE successfully delivered reliable LS measurements.
Collapse
Affiliation(s)
- Jihyuk Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|