1
|
Shokri‐Mashhadi N, Navab F, Ansari S, Rouhani MH, Hajhashemy Z, Saraf‐Bank S. A meta-analysis of the effect of probiotic administration on age-related sarcopenia. Food Sci Nutr 2023; 11:4975-4987. [PMID: 37701185 PMCID: PMC10494607 DOI: 10.1002/fsn3.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 09/14/2023] Open
Abstract
Global increase in the prevalence of age-related diseases, such as sarcopenia, highlights the need of recognizing agents that improve muscle health; however, the evidence synthesis on the impact of probiotic administration on sarcopenia is scarce. To summarize and evaluate findings regarding the effect of supplementation with probiotics on sarcopenia, this meta-analysis was conducted. Using databases, including PubMed, SCOPUS, ISI-Web of Science, and Cochrane Library, interventional studies were included if they investigate the effect of probiotic administration on at least one of the components of sarcopenia up to 6 October 2022. Risk of bias evaluation was conducted using the Cochrane quality assessment tool. The random-effects model which takes between-study variations into account was used to obtain the overall effect sizes. The STATA version 14.0 was used for statistical analyses. Overall, 17 studies were included. There was high certainty of evidence that probiotic supplementation has a beneficial effect on muscle mass (kg) (WMD: 0.55, 95% CI: 0.05, 1.05; I 2: 0.0%, p = .995), and muscle function (WMD: 0.13, 95% CI: 0.03, 0.23; I 2: 65.6%, p = .05). Moreover, administration of probiotics for more than 12 weeks significantly increased muscle strength (WMD: 1.16, 95% CI: 0.88, 1.44; I 2: 0.0%, p = .77). However, probiotic supplementation had no effect on anthropometric indices, including body mass index. Probiotic supplementation could improve muscle mass and muscle function in adults more than 55 years old. The beneficial effect of probiotics on muscle strength could appear after 12 weeks of supplementation.
Collapse
Affiliation(s)
- Nafiseh Shokri‐Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Fatemeh Navab
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Shakila Ansari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Hossein Rouhani
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Hajhashemy
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Sahar Saraf‐Bank
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
2
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Effect of Food Endotoxin on Infant Health. Toxins (Basel) 2021; 13:298. [PMID: 33922125 PMCID: PMC8143472 DOI: 10.3390/toxins13050298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Endotoxin is a complex molecule derived from the outer membrane of Gram-negative bacteria, and it has strong thermal stability. The processing of infant food can kill pathogenic bacteria but cannot remove endotoxin. Because the intestinal structure of infants is not fully developed, residual endotoxin poses a threat to their health by damaging the intestinal flora and inducing intestinal inflammation, obesity, and sepsis, among others. This paper discusses the sources and contents of endotoxin in infant food and methods for preventing endotoxin from harming infants. However, there is no clear evidence that endotoxin levels in infant food cause significant immune symptoms or even diseases in infants. However, in order to improve the safety level of infant food and reduce the endotoxin content, this issue should not be ignored. The purpose of this review is to provide a theoretical basis for manufacturers and consumers to understand the possible harm of endotoxin content in infant formula milk powder and to explore how to reduce its level in infant formula milk powder. Generally, producers should focus on cleaning the milk source, securing the cold chain, avoiding long-distance transportation, and shortening the storage time of raw milk to reduce the level of bacteria and endotoxin. After production and processing, the endotoxin content should be measured as an important index to test the quality of infant formula milk powder so as to provide high-quality infant products for the healthy growth of newborns.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Deng Y, Xiong X, Liu X, He C, Guo S, Tang S, Qu X. Palygorskite combined probiotics improve the laying performance, hatching performance, egg quality, plasma antioxidative status, and immune response of broiler breeders. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1966845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaowei Xiong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
4
|
Wang H, Chen Y, Guli M, Li Z, Li Z, Xu W, Wu Z. Combination of inulin and compound probiotic exert synergism in attenuating HFD-induced obesity but shows gender-difference. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Sheng K, He S, Sun M, Zhang G, Kong X, Wang J, Wang Y. Synbiotic supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate sodium-induced ulcerative colitis. Food Funct 2020; 11:3964-3974. [DOI: 10.1039/d0fo00518e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synbiotics (Bifidobacterium infantis + xylooligosaccharides) had the strongest efficacy on colitis through inhibiting inflammation and oxidative stress and protecting epithelial integrity.
Collapse
Affiliation(s)
- Kangliang Sheng
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Shiman He
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Ming Sun
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Guanghui Zhang
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Xiaowei Kong
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Jingmin Wang
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| | - Yongzhong Wang
- School of Life Sciences
- Anhui University
- Hefei 230601
- China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes
| |
Collapse
|
6
|
Talani G, Biggio F, Mostallino MC, Locci V, Porcedda C, Boi L, Saolini E, Piras R, Sanna E, Biggio G. Treatment with gut bifidobacteria improves hippocampal plasticity and cognitive behavior in adult healthy rats. Neuropharmacology 2019; 165:107909. [PMID: 31857091 DOI: 10.1016/j.neuropharm.2019.107909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
At the present time, gut microbiota inspires great interest in the field of neuroscience as a function of its role in normal physiology and involvement in brain function. This aspect suggests a specific gut-brain pathway, mainly modulated by gut microbiota activity. Among the multiple actions controlled by microbiota at the brain level, neuronal plasticity and cognitive function represent two of the most interesting aspects of this cross-talk communication. We address the possible action of two-months implementation of gut Bifidobacteria using a mixture of three different strains (B-MIX) on hippocampal plasticity and related cognitive behavior in adult healthy Sprague Dawley rats. B-MIX treatment increases the hippocampal BDNF with a parallel gain in dendritic spines' density of hippocampal CA1 pyramidal neurons. Electrophysiological experiments revealed a significant increment of HFS-induced LTP formation on the CA1 hippocampal region in B-MIX treated rats. All these effects are accompanied by a better cognitive performance observed in B-MIX treated animals with no impairments in locomotion activity. Therefore, in adult rats, the treatment with different strains of bifidobacteria is able to markedly enhance neuronal plasticity and the CNS function influencing cognitive behavior, an effect that may suggest a potential therapeutic treatment in brain diseases associated with cognitive functions.
Collapse
Affiliation(s)
- G Talani
- Institute of Neuroscience, National Research Council, Italy.
| | - F Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - M C Mostallino
- Institute of Neuroscience, National Research Council, Italy
| | - V Locci
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Porcedda
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - L Boi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - E Saolini
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - R Piras
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - E Sanna
- Institute of Neuroscience, National Research Council, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - G Biggio
- Institute of Neuroscience, National Research Council, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| |
Collapse
|