1
|
Beyoğlu D, Popov YV, Idle JR. The Metabolomic Footprint of Liver Fibrosis. Cells 2024; 13:1333. [PMID: 39195223 PMCID: PMC11353060 DOI: 10.3390/cells13161333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Both experimental and clinical liver fibrosis leave a metabolic footprint that can be uncovered and defined using metabolomic approaches. Metabolomics combines pattern recognition algorithms with analytical chemistry, in particular, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS) and various liquid chromatography-mass spectrometry (LC-MS) platforms. The analysis of liver fibrosis by each of these methodologies is reviewed separately. Surprisingly, there was little general agreement between studies within each of these three groups and also between groups. The metabolomic footprint determined by NMR (two or more hits between studies) comprised elevated lactate, acetate, choline, 3-hydroxybutyrate, glucose, histidine, methionine, glutamine, phenylalanine, tyrosine and citrate. For GC-MS, succinate, fumarate, malate, ascorbate, glutamate, glycine, serine and, in agreement with NMR, glutamine, phenylalanine, tyrosine and citrate were delineated. For LC-MS, only β-muricholic acid, tryptophan, acylcarnitine, p-cresol, valine and, in agreement with NMR, phosphocholine were identified. The metabolomic footprint of liver fibrosis was upregulated as regards glutamine, phenylalanine, tyrosine, citrate and phosphocholine. Several investigators employed traditional Chinese medicine (TCM) treatments to reverse experimental liver fibrosis, and a commentary is given on the chemical constituents that may possess fibrolytic activity. It is proposed that molecular docking procedures using these TCM constituents may lead to novel therapies for liver fibrosis affecting at least one-in-twenty persons globally, for which there is currently no pharmaceutical cure. This in-depth review summarizes the relevant literature on metabolomics and its implications in addressing the clinical problem of liver fibrosis, cirrhosis and its sequelae.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Yury V. Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| |
Collapse
|
2
|
Zhang J, Wang W, Cui X, Zhu P, Li S, Yuan S, Peng D, Peng C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117656. [PMID: 38154526 DOI: 10.1016/j.jep.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-β1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinge Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Thiéfin G, Bertrand D, Untereiner V, Garnotel R, Bronowicki JP, Sockalingum GD. Serum infrared spectral profile is predictive of the degree of hepatic fibrosis in chronic hepatitis C patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123433. [PMID: 37774586 DOI: 10.1016/j.saa.2023.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Assessment of liver fibrosis is crucial to guide the therapeutic strategy in patients with chronic liver disease. We investigated the potential of serum Fourier transform infrared (FTIR) spectroscopy for assessing the degree of hepatic fibrosis in patients with chronic hepatitis C (CHC). The study was conducted on dried serum samples from 94 CHC patients at different histological stages of hepatic fibrosis: METAVIR F0 (n = 20), F1 (n = 17), F2 (n = 20), F3 (n = 20) and F4 (n = 17). Transmission FTIR spectra were acquired in the 4000-400 cm-1 range. Wavenumbers were selected by genetic algorithm (GA) according to their diagnostic performance as assessed by a partial least squares discriminant analysis (PLS-DA) model using a training and a validation set to differentiate severe stages of fibrosis from mild or moderate ones. The GA procedure was applied 50 times on randomly selected sets. Furthermore, the best set of wavenumbers was re-tested in 1000 randomly selected validation sets. Wavenumbers selected by GA corresponded to functional groups present in lipids, proteins, and carbohydrates. This model allowed to identify patients with cirrhosis (METAVIR F4), patients with advanced fibrosis (METAVIR F3 and F4), and patients with significant fibrosis (METAVIR F2, F3 and F4), with AUROC (Area Under the Receiver Operating Characteristic) of 0.88, 0.85 and 0.85, respectively. Thus, serum FTIR spectroscopy appears to have a strong potential as a new diagnostic tool for assessing the degree of fibrosis in patients with chronic liver disease.
Collapse
Affiliation(s)
- Gérard Thiéfin
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51097 Reims, France; Service d'Hépato-Gastroentérologie et de Cancérologie Digestive, Centre Hospitalier Universitaire de Reims, 51092 Reims, France
| | | | - Valérie Untereiner
- Université de Reims Champagne-Ardenne, Plateforme en Imagerie Cellulaire et Tissulaire (PICT), 51097 Reims Cedex, France
| | - Roselyne Garnotel
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51097 Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier Universitaire de Reims, 51092, Reims, France
| | - Jean-Pierre Bronowicki
- Service d'Hépato-Gastroentérologie, CHRU de Nancy-Brabois, Vandœuvre-lès-Nancy, 54511, France
| | - Ganesh D Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51097 Reims, France.
| |
Collapse
|
4
|
Wang S, Li W, Liu W, Yu L, Peng F, Qin J, Pu L, Tang Y, Xie X, Peng C. Total flavonoids extracted from Penthorum chinense Pursh mitigates CCl 4-induced hepatic fibrosis in rats via inactivation of TLR4-MyD88-mediated NF-κB pathways and regulation of liver metabolism. Front Pharmacol 2023; 14:1253013. [PMID: 38074148 PMCID: PMC10701287 DOI: 10.3389/fphar.2023.1253013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 05/16/2025] Open
Abstract
Background: Penthorum chinense Pursh (PCP) is widely utilized in China to treat a variety of liver diseases. It has been shown that flavonoids inhibit inflammation and have the potential to attenuate tissue damage and fibrosis. However, the mechanisms underlying how total flavonoids isolated from PCP (TFPCP) exert their anti-fibrotic effects remain unclear. Methods: The chemical composition of TFPCP was determined using UHPLC-Q-Orbitrap HRMS. Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl4)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kg∙day)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kg∙day)]. All substances were administered by gavage and treatments lasted for 9 weeks. Simultaneously, rats were intraperitoneally injected with 10%-20% CCl4 for 9 weeks to induce liver fibrosis. At the end of the experiment, the liver ultrasound, liver histomorphological, biochemical indicators, and inflammatory cytokine levels were tested respectively. The underlying mechanisms were assessed using Western blot, immunohistochemistry, immunofluorescence, RT-qPCR, and metabolomics. Results: Fourteen flavonoids were identified in TFPCP. Compared with control animals, CCl4-treated rats demonstrated obvious liver injury and fibrosis, manifested as increases in gray values, distal diameter of portal vein (DDPV) and a decrease in blood flow velocity (VPV) in the ultrasound analysis; increased biochemical index values (serum levels of ALT, AST, TBIL, and ALP); marked increases in the contents of fibrotic markers (PC III, COL4, LN, HA) and inflammatory factors (serum TNF-α, IL-6, and IL-1β); and significant pathological changes. However, compared with the Model group, the ultrasound parameters were significantly improved and the serum levels of inflammatory cytokines were reduced in the TFPCP group. In contrast, the expression of TGF-β1, TLR4, and MyD88, as well as the p-P65/P65 and p-IκBα/IκBα ratios, were considerably reduced following TFPCP treatment. In addition, we identified 32 metabolites exhibiting differential abundance in the Model group. Interestingly, TFPCP treatment resulted in the restoration of the levels of 20 of these metabolites. Conclusion: Our findings indicated that TFPCP can ameliorate hepatic fibrosis by improving liver function and morphology via the inactivation of the TLR4/MyD88-mediated NF-κB pathway and the regulation of liver metabolism.
Collapse
Affiliation(s)
- Sujuan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Bai XP, Du WJ, Xing HB, Yang GH, Bai R. Influence of ursodeoxycholic acid on blood glucose, insulin and GLP-1 in rats with liver fibrosis induced by bile duct ligation. Diabetol Metab Syndr 2023; 15:18. [PMID: 36788623 PMCID: PMC9930340 DOI: 10.1186/s13098-023-00989-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The prevalence of impaired glucose tolerance and diabetes is much higher in people with cirrhosis than that in the general population. However, there are inadequate concrete guidelines for the management of diabetes in these patients, particularly in the early stage. Bile aids (BAs) have been found to exert hormone-like functions in the control of lipid and glucose metabolism. We studied the effect of ursodeoxycholic acid (UDCA) on glucose levels in rats with cirrhosis induced by bile duct ligation (BDL). METHODS SD rats were divided into three groups: sham operation (Group A); BDL (Group B), and UDCA plus BDL (Group C). After 4 weeks, oral glucose tolerance tests were performed. Serum biochemical parameters and the levels of glucose, insulin, and glucagon-like peptide 1 (GLP-1) were measured. Histopathology of the liver and islet was observed. The gene expression of cholesterol 7α-hydroylase (CYP7A1), microsomal oxysterol 7a-hydroxylase (CYP7B1) in the liver, and Takeda G-protein-coupled receptor-5 (TGR5) in the intestine was determined by real-time PCR. RESULTS Compared with Group A, fasting glucose and 1-h and 2-h postprandial glucose levels increased slightly (all P > 0.05), 2-h postprandial insulin levels increased significantly (P < 0.05), 15 min postprandial GLP-1 levels decreased (P < 0.05) in Group B. Compared with Group B, fasting glucose and 1-h postprandial glucose levels decreased (all P < 0.05), 2-h postprandial insulin levels decreased (P < 0.01), and 15 min postprandial GLP-1 levels increased (P < 0.05) in Group C. After UDCA intervention, liver fibrosis induced by BDL was alleviated, and the islet areas were increased (P < 0.05). Compared with Group A, the mRNA expression of CYP7A1 and CYP7B1 in the liver increased, and the mRNA expression of TGR5 in the intestine decreased in Group B (all P < 0.05). Compared with Group B, the mRNA expression of CYP7A1 and CYP7B1 in the liver decreased, and TGR5 in the intestine increased in Group C (P < 0.05). CONCLUSIONS After 4 weeks of BDL, the rats developed liver fibrosis and abnormal glucose metabolism. UDCA administration improved liver fibrosis, increased islet area, decreased glucose levels, inhibited genes in BA synthesis, enhanced TGR5 gene expression in the intestine, and further improved islet function.
Collapse
Affiliation(s)
- Xiu-Ping Bai
- Endocrinology Division, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Wen-Jin Du
- Endocrinology Division, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hua-Bing Xing
- Endocrinology Division, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Guo-Hua Yang
- Central Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Bai
- Central Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
6
|
Jiang L, Gai X, Ni Y, Qiang T, Zhang Y, Kang X, Xiong K, Wang J. Folic acid protects against tuberculosis-drug-induced liver injury in rats and its potential mechanism by metabolomics. J Nutr Biochem 2023; 112:109214. [PMID: 36370928 DOI: 10.1016/j.jnutbio.2022.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Observational study indicated that folic acid (FA) supplementation may protect against tuberculosis-drug-induced liver injury (TBLI). The aim is to investigate the effect and mechanism of FA on TBLI in rats. Liver injury was induced by a daily gavage of isoniazid (INH) and rifampicin (RIF) in the model and FA groups. Rats in the FA group were also treated with 2.5 mg/kg body weight FA. Rats in the control group were not treated. Eight rats were used in each group. The severity of liver injury was measured by the serum levels of hepatic enzymes and histological score. The metabolites in serum and liver tissues were analyzed by HPLC-Q-TOF-MS/MS. FA treatment significantly reduced alanine aminotransferase and liver necrosis. Seventy-nine differential metabolites in the serum and liver tissues were identified among the three groups. N-acylethanolamines, INH and RIF metabolites, phosphatidylcholines, lysophosphatidylcholines, monoglycerides, diglycerides and bile acids were regulated by FA treatment, involving key metabolic pathways, such as N-acylethanolamine metabolism, INH and RIF metabolism, liver regeneration, inflammation alleviation and bile acid metabolism. RT-PCR and western blotting results confirmed the altered N-acylethanolamine metabolism and improved drug metabolism by FA. In conclusion, FA was protective against TBLI, which may be related to the regulation of N-acylethanolamine metabolism and drug detoxification by FA.
Collapse
Affiliation(s)
- Lan Jiang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiaochun Gai
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China; School of Public Health, University of Michigan, Ann Arbor, Michigan, United States
| | - Ya Ni
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ting Qiang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yingying Zhang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiao Kang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ke Xiong
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China.
| | - Jinyu Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Gao Y, Qian Q, Xun G, Zhang J, Sun S, Liu X, Liu F, Ge J, Zhang H, Fu Y, Su S, Wang X, Wang Q. Integrated metabolomics and network analysis reveal changes in lipid metabolisms of tripterygium glycosides tablets in rats with collagen-induced arthritis. Comput Struct Biotechnol J 2023; 21:1828-1842. [PMID: 36923473 PMCID: PMC10009339 DOI: 10.1016/j.csbj.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Tripterygium glycosides tablets (TGT) are the commonly used preparation for rheumatoid arthritis (RA). However, the changes in TGT on RA are still unclear at the metabolic level. This study aimed to reveal the biological processes of TGT in collagen-induced arthritis (CIA) rats through integrated metabolomics and network analysis. First, the CIA model in rats was established, and the CIA rats were given three doses of TGT. Then, the endogenous metabolites in the serum from normal rats, CIA rats, and CIA rats treated with varying doses of TGT were detected by UHPLC-QTOF-MS/MS. Next, univariate and multivariate statistical analyses were performed to find the differential metabolites. Finally, differential metabolites, metabolic pathways, and hub genes were analyzed integrally to reveal the biological processes of TGT in CIA rats. The paw diameter, arthritis score, immunoglobulin G (IgG) concentration, CT image, and histological assay showed that TGT had evident therapeutic effects on CIA rats. Untargeted metabolomics revealed that TGT could ameliorate the down-regulation of lipid levels in CIA rats. Four key differential metabolites were found including LysoP(18:0), LysoPA(20:4), LysoPA(18:2), and PS(O-20:0/17:1). The glycerophospholipid metabolic pathway was perturbed in treating CIA with TGT. A total of 24 genes, including PLD1, LPCAT4, AGPAT1, and PLA2G4A, were found to be the hub genes of TGT in CIA rats. In conclusion, the integrated analysis provided a novel and holistic perspective on the biological processes of TGT in CIA rats, which could give helpful guidance for further TGT on RA. Future studies based on human samples are necessary.
Collapse
Key Words
- CDS, Calibrant Delivery System
- CFA, Complete Freund’s adjuvant
- CIA, collagen-induced arthritis
- CUR, curtain gas
- DMARDs, disease-modifying anti-rheumatic drugs
- ESI, electrospray ionization
- FC, fold change
- GS1, nebulizer gas
- GS2, heater gas
- HMDB, Human Metabolome Database
- IDA, Information Dependent Acquisition
- IgG, immunoglobulin G
- Lipid metabolisms
- Metabolomics
- Micro-CT, Micro-computed tomography
- Network analysis
- QC, quality control
- RA, rheumatoid arthritis
- ROC, Receiver operating characteristic
- Rheumatoid arthritis
- TGT, Tripterygium glycosides tablets
- Tripterygium glycosides tablets
- VIP, variable importance in projection
Collapse
Affiliation(s)
- Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Suwen Su
- Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
8
|
Zheng Y, Wang J, Wang J, Jiang R, Zhao T. Gut microbiota combined with metabolomics reveal the mechanism of curcumol on liver fibrosis in mice. Biomed Pharmacother 2022; 152:113204. [PMID: 35653891 DOI: 10.1016/j.biopha.2022.113204] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Liver fibrosis is a reversible pathological process, and its prevention and treatment hold great significance for patients with chronic liver disease. This study combined 16S rRNA analysis of gut microbiota and serum metabolomics to explore the mechanism of curcumol's effect on liver fibrosis in mice. The results clarified the relationship between the gut microbiota and metabolites in the process of liver fibrosis. MATERIALS AND METHODS In this study, we randomly divided mice into a control group, a model group, and a curcumol treatment group to analyze the pathological changes in the liver tissue as well as the activities of the toll-like receptor 4 (TLR4)/nuclear factory kappa B (NF-κB) signaling pathway and inflammatory factors, such as tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-8. The gut microbiota were analyzed by 16 S rRNA sequencing, and serum metabolites were examined by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. RESULTS Molecular biological testing found that curcumol could significantly improve the pathological changes of the liver tissue and inhibit the occurrence of liver inflammation. Intestinal flora testing found that curcumol could significantly change the abundances of Veillonellaceae, Prerotella_oulorum, and Alistipes_finegoldii. Metabolomics analysis found that curcumol's antihepatic fibrosis effect may be related to its regulation of arachidonic acid metabolism. Correlation analysis suggested that curcumol regulated the abundances of Bacteroidota and Bacteroides and participated in the metabolism of Prostaglandin B2. CONCLUSIONS When liver fibrosis occurs, the intestinal flora and metabolic network are altered. The effect of curcumol on liver fibrosis may be related to its regulation of intestinal flora and the resulting interference with metabolic pathways, thereby reducing liver inflammation.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiaru Wang
- College of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Ruizhu Jiang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China.
| |
Collapse
|
9
|
Luo X, Zhang B, Pan Y, Gu J, Tan R, Gong P. Phyllanthus emblica aqueous extract retards hepatic steatosis and fibrosis in NAFLD mice in association with the reshaping of intestinal microecology. Front Pharmacol 2022; 13:893561. [PMID: 35959433 PMCID: PMC9360598 DOI: 10.3389/fphar.2022.893561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of the intestinal flora potentially contributes to the occurrence and development of nonalcoholic fatty liver disease (NAFLD). Phyllanthus emblica (PE), an edible and medicinal natural resource, exerts excellent effects on ameliorating NAFLD, but the potential mechanism remains unclear. In the present study, a mouse NAFLD model was established by administering a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). The protective effects of the aqueous extract of PE (AEPE) on the gut microbiota and fecal metabolites in NAFLD mice were detected by performing 16S rRNA gene sequencing and untargeted metabolomics. The administration of middle- and high-dose AEPE decreased the levels of ALT, AST, LDL-C, TG, and Hyp and increased HDL-C levels in CDAHFD-fed mice. Hematoxylin–eosin (H&E), Oil Red O, and Masson’s trichrome staining indicated that AEPE treatment attenuated hepatic steatosis and fibrotic lesions. Moreover, the disordered intestinal microflora was remodeled by AEPE, including decreases in the abundance of Peptostreptococcaceae, Faecalibaculum, and Romboutsia. The untargeted metabolomics analysis showed that AEPE restored the disturbed glutathione metabolism, tryptophan metabolism, taurine and hypotaurine metabolism, and primary bile acid biosynthesis of the gut bacterial community in NAFLD mice, which strongly correlated with hepatic steatosis and fibrosis. Collectively, AEPE potentially ameliorates NAFLD induced by a CDAHFD through a mechanism associated with its modulatory effects on the gut microbiota and microbial metabolism.
Collapse
Affiliation(s)
- Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Boyu Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Yehua Pan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- *Correspondence: Puyang Gong,
| |
Collapse
|
10
|
Yan J, Fang X, Feng Y, Cui X, Li F, Luo W, Ma X, Liang J, Feng J. Identification of key genes associated with the progression of liver fibrosis to hepatocellular carcinoma based on iTRAQ proteomics and GEO database. Ann Hepatol 2022; 27:100681. [PMID: 35124283 DOI: 10.1016/j.aohep.2022.100681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVE Liver fibrosis (LF) often leads to cirrhosis and even hepatocellular carcinoma (HCC), but the molecular mechanism remains unclear. The aims of the present study were to identify potential biomarkers for the progression of LF to HCC and explore the associated molecular mechanisms. MATERIALS AND METHODS The isobaric tags for relative and absolute quantitation (iTRAQ) was used to detect changes in the protein expression profiles of liver tissues and to screen the differentially expressed proteins (DEPs). The differentially expressed genes (DEGs) of LF rats and patients were screened by Gene Expression Database (GEO). Subsequently, the clinicopathological analysis of the overlapping genes in different pathological stages in HCC patients based on GEPIA database was conducted. RESULTS iTRAQ proteomic analysis revealed 689, 749 and 585 DEPs in the 6W, 8W and 12W groups, respectively. ALDH2, SLC27A5 and ASNS were not only the DEPs found in rats with LF with different stages but were also the DEGs related to the pathological stages and survival in patients with HCC. CONCLUSIONS ALDH2, SLC27A5 and ASNS were the potential biomarkers associated with the progression of LF to HCC.
Collapse
Affiliation(s)
- Jiongyi Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuewan Fang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yinyi Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaojuan Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Weisheng Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaocong Ma
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jianqin Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Superior Proprietary Chinese Medicine and Ethnic Medicine Development Engineering Technology Research Centre, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Superior Proprietary Chinese Medicine and Ethnic Medicine Development Engineering Technology Research Centre, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
11
|
Dong Q, An Y, Du G, Wang J, Liu J, Su J, Xie H, Liang C, Liu J. Identification of ginsenoside metabolites in plasma related to different bioactivities of Panax notoginseng and Panax Ginseng. Biomed Chromatogr 2022; 36:e5334. [PMID: 35045586 DOI: 10.1002/bmc.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Although the chemical components of Panax notoginseng (PN) and Panax ginseng (PG) are similar, the bioactivities of them are different. In this study, the differential bioactivities of PN and PG were used as the research object. First, the different metabolites in the plasma after oral administration of PN and PG were analyzed by a UPLC-Q/TOF-MS-based metabolomics approach. Afterward, the metabolite-target- pathway network of PN and PG was constructed, thus the pathways related to different bioactivities were analyzed. As the results, 7 different metabolites were identified in PN group, and 10 different metabolites were identified in the PG group. In the PN group, the metabolite of N1 was related to hemostasis, N1 and N3 were related to inhibiting the nerve center, antihypertensive, and abirritation. The metabolites of N1, N3, N4, N5, and N6 were related to protecting the liver. The results showed that the metabolites of G1, G2, G3, G5, and G6 in PG group were related to anti-heart failure, and G1, G2, G6, and G9 were related to raising blood pressure. There were 13 signaling pathways related to different biological activities of PN (eight pathways) and PG (five pathways). These pathways further clarified the mechanism of action that caused the different bioactivities between PN and PG. In summary, metabolomics combined with network pharmacology could be helpful to clarify the material basis of different bioactivities between PN and PG, promoting the research on PN and PG.
Collapse
Affiliation(s)
- Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | | | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, P. R. China
| | - Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| |
Collapse
|
12
|
Bai XP, Fan YM, Zhang L, Yang GH, Li X. Influence of Liver Cirrhosis on Blood Glucose, Insulin Sensitivity and Islet Function in Mice. Am J Med Sci 2021; 362:403-417. [PMID: 34274322 DOI: 10.1016/j.amjms.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/27/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The relationship between cirrhosis and diabetes is controversial. We studied the influence of cirrhosis on glucose levels and islet function and explored its possible mechanisms. MATERIALS AND METHODS Cirrhosis was induced in male C57BL/6 mice by bile duct ligation (BDL). Serum biochemical parameters were determined, and oral glucose tolerance tests (OGTT) were performed at 4 and 8 weeks after BDL. Histopathology and phospho-NF-κB-p65/I-kappa B α immunohistochemical staining of the liver and islet were observed. The protein levels of the insulin signaling system and the gene expression of insulin-degrading enzyme (IDE) in the liver and muscle were determined. The activity of glucokinase (GCK) and glucose 6-phosphatase (G6P) and glycogen levels in liver homogenates were measured. RESULTS After BDL, the mice developed cirrhosis, and fasting glucose decreased significantly, but 2 h postprandial glucose increased, and the insulin areas under the curves increased. At 4 weeks of BDL, the ratios of phospho-NF-κB-p65/I-kappa B α accumulation in the liver and islet increased, the activity of G6P and the glycogen content in liver homogenates decreased, the insulin signaling system and the gene expression of IDE in the liver was downregulated, and the islet areas were decreased. After 8 weeks, these changes were more severe. CONCLUSIONS In different periods of cirrhosis, the levels of fasting glucose and 2 h postprandial glucose changed in different amplitudes. Glycogen concentrations and the activity of G6P in the liver were decreased. The mice developed insulin resistance and the islet areas were decreased. The NF-κB pathway may play a role in the process.
Collapse
Affiliation(s)
- Xiu-Ping Bai
- Endocrinology Division, The Second Hospital of ShanXi Medical University, TaiYuan 030001, ShanXi, China.
| | - Yong-Mei Fan
- Endocrinology Division, The Second Hospital of ShanXi Medical University, TaiYuan 030001, ShanXi, China
| | - Lei Zhang
- Endocrinology Division, The Second Hospital of ShanXi Medical University, TaiYuan 030001, ShanXi, China
| | - Guo-Hua Yang
- Central Laboratory, The Second Hospital of ShanXi Medical University, TaiYuan 030001, ShanXi, China
| | - Xing Li
- Endocrinology Division, The Second Hospital of ShanXi Medical University, TaiYuan 030001, ShanXi, China
| |
Collapse
|
13
|
Li S, Wang Y, Li C, Yang N, Yu H, Zhou W, Chen S, Yang S, Li Y. Study on Hepatotoxicity of Rhubarb Based on Metabolomics and Network Pharmacology. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1883-1902. [PMID: 33976539 PMCID: PMC8106470 DOI: 10.2147/dddt.s301417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Background Rhubarb, as a traditional Chinese medicine, is the preferred drug for the treatment of stagnation and constipation in clinical practice. It has been reported that rhubarb possesses hepatotoxicity, but its mechanism in vivo is still unclear. Methods In this study, the chemical components in rhubarb were identified based on UPLC-Q-TOF/MS combined with data postprocessing technology. The metabolic biomarkers obtained through metabolomics technology were related to rhubarb-induced hepatotoxicity. Furthermore, the potential targets of rhubarb-induced hepatotoxicity were obtained by network pharmacology involving the above components and metabolites. Meanwhile, GO gene enrichment analysis and KEGG pathway analysis were performed on the common targets. Results Twenty-eight components in rhubarb were identified based on UPLC-Q-TOF/MS, and 242 targets related to rhubarb ingredients were predicted. Nine metabolic biomarkers obtained through metabolomics technology were closely related to rhubarb-induced hepatotoxicity, and 282 targets of metabolites were predicted. Among them, the levels of 4 metabolites, namely dynorphin B (10–13), cervonoyl ethanolamide, lysoPE (18:2), and 3-hydroxyphenyl 2-hydroxybenzoate, significantly increased, while the levels of 5 metabolites, namely dopamine, biopterin, choline, coenzyme Q9 and P1, P4-bis (5ʹ-uridyl) tetraphosphate significantly decreased. In addition, 166 potential targets of rhubarb-induced hepatotoxicity were obtained by network pharmacology. The KEGG pathway analysis was performed on the common targets to obtain 46 associated signaling pathways. Conclusion These data suggested that rhubarb may cause liver toxicity due to its action on dopamine D1 receptor (DRD1), dopamine D2 receptor (DRD2), phosphodiesterase 4B (PDE4B), vanilloid receptor (TRPV1); transient receptor potential cation channel subfamily M member 8 (TRPM8), prostanoid EP2 receptor (PTGER2), acetylcholinesterase (ACHE), muscarinic acetylcholine receptor M3 (CHRM3) through the cAMP signaling pathway, cholinergic synapses, and inflammatory mediators to regulate TRP channels. Metabolomics technology and network pharmacology were integrated to explore rhubarb hepatotoxicity to promote the reasonable clinical application of rhubarb.
Collapse
Affiliation(s)
- Shanze Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chunyan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Na Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Hongxin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenjie Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Siyu Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Liu Y, Song Z, Chen X, Zhu Z, Zhang L, Hong Z, Chai Y. Nuclear magnetic resonance-based plasma metabolomics revealed the protective effect of tea polyphenols on sulfur mustard-induced injury in rats. J Pharm Biomed Anal 2020; 186:113278. [PMID: 32380352 DOI: 10.1016/j.jpba.2020.113278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/01/2022]
Abstract
Tea polyphenols (TP) are the major antioxidant components from tea, which could be beneficial to oxidative stress injury, such as sulfur mustard (SM) exposure. However, the holistic efficacy of TP on SM poisoning remains unexplored and needs further investigation. In this study, Nuclear magnetic resonance(NMR)-based metabolomics along with multivariate statistical analysis was used to explore the metabolic alteration after SM injury and the protective mechanism of TP. Thirteen potential plasma biomarkers of SM injury were identified, which primarily related to synthesis of ketone bodies, arginine and proline metabolism, butanoate metabolism and alanine aspartate and glutamate metabolism. After TP pre-treatment, the biomarkers were mostly restored to normal levels, which suggested that TP provided effective protection against SM injury and might play its role by rebalancing disordered metabolism pathways. This work enhanced our comprehension of the metabolic profiling of SM injury and revealed the protective mechanism of TP.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhiqiang Song
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
15
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
16
|
Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019; 8:cells8111423. [PMID: 31726658 PMCID: PMC6912636 DOI: 10.3390/cells8111423] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality worldwide, as it ultimately leads to cirrhosis, which is estimated to affect up to 2% of the global population. Hepatic fibrosis is confirmed by liver biopsy, and the erroneous nature of this technique necessitates the search for noninvasive alternatives. However, current biomarker algorithms for hepatic fibrosis have many limitations. Given that the liver is the largest organ and a major metabolic hub in the body, probing the metabolic signature of hepatic fibrosis holds promise for the discovery of new markers and therapeutic targets. Regarding individual metabolic pathways, accumulating evidence shows that hepatic fibrosis leads to alterations in carbohydrate metabolism, as aerobic glycolysis is aggravated in activated hepatic stellate cells (HSCs) and the whole fibrotic liver; in amino acid metabolism, as Fischer’s ratio (branched-chain amino acids/aromatic amino acids) decreases in patients with hepatic fibrosis; and in lipid metabolism, as HSCs lose vitamin A-containing lipid droplets during transdifferentiation, and cirrhotic patients have decreased serum lipids. The current review also summarizes recent findings of metabolic alterations relevant to hepatic fibrosis based on systems biology approaches, including transcriptomics, proteomics, and metabolomics in vitro, in animal models and in humans.
Collapse
|
17
|
Wang D, Li R, Wei S, Gao S, Xu Z, Liu H, Wang R, Li H, Cai H, Wang J, Zhao Y. Metabolomics combined with network pharmacology exploration reveals the modulatory properties of Astragali Radix extract in the treatment of liver fibrosis. Chin Med 2019; 14:30. [PMID: 31467589 PMCID: PMC6712842 DOI: 10.1186/s13020-019-0251-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Astragali Radix (AR) is widely-used for improving liver fibrosis, but, the mechanism of action has not been systematically explained. This study aims to investigate the mechanism of AR intervention in liver fibrosis based on comprehensive metabolomics combined with network pharmacology approach. MATERIALS AND METHODS UPLC-Q-TOF/MS based metabolomics technique was used to explore the specific metabolites and possible pathways of AR affecting the pathological process of liver fibrosis. Network pharmacology analysis was introduced to explore the key targets of AR regarding the mechanisms on liver fibrosis. RESULTS AR significantly reduced the levels of ALT, AST and AKP in serum, and improved pathological characteristics. Metabolomics analysis showed that the therapeutic effect of AR was mainly related to the regulation of nine metabolites, including sphingosine, 6-keto-prostaglandin F1a, LysoPC (O-18:0), 3-dehydrosphinganine, 5,6-epoxy-8,11,14-eicosatrienoic acid, leukotriene C4, taurochenodesoxycholic acid, LysoPC (18:1 (9Z)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine. Pathway analysis indicated that the treatment of AR on liver fibrosis was related to arachidonic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and primary bile acid biosynthesis. Validation of the key targets by network pharmacology analysis of potential metabolic markers showed that AR significantly down-regulated the expression of CYP1B1 and up-regulated the expression of CYP1A2 and PCYT1A. CONCLUSION Metabolomics combined with network pharmacology was used for the first time to clarify that the treatment of AR on liver fibrosis, which is related to the regulation of arachidonic acid metabolism and ether lipid metabolism by modulating the expression of CYP1A2, CYP1B1 and PCYT1A. And the integrated approach can provide new strategies and ideas for the study of molecular mechanisms of traditional Chinese medicines in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dan Wang
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Shizhang Wei
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Sijia Gao
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Zhuo Xu
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Honghong Liu
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Huadan Cai
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Jian Wang
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| |
Collapse
|