1
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Mushebenge AG, Ugbaja SC, Mtambo SE, Ntombela T, Metu JI, Babayemi O, Chima JI, Appiah-Kubi P, Odugbemi AI, Ntuli ML, Khan R, Kumalo HM. Unveiling the Inhibitory Potentials of Peptidomimetic Azanitriles and Pyridyl Esters towards SARS-CoV-2 Main Protease: A Molecular Modelling Investigation. Molecules 2023; 28:molecules28062641. [PMID: 36985614 PMCID: PMC10051727 DOI: 10.3390/molecules28062641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus’s life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds’ binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of −49.37 ± 0.15 kcal/mol, followed by compound 7 (−39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (−23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug’s ability to bind better at the active site of the SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Aganze G. Mushebenge
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
| | - Samuel C. Ugbaja
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
- Correspondence: (S.C.U.); (H.M.K.)
| | - Sphamandla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Joy I. Metu
- National Institute for Nigerian Languages, Aba 453106, Nigeria;
| | - Oludotun Babayemi
- Cloneshouse Nigeria, 6th Floor, Left Wing, NICON Plaza, Plot 242, Muhammadu Buhari Way, Central Business District, Abuja 900103, Nigeria;
| | - Joy I. Chima
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
| | - Patrick Appiah-Kubi
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
| | - Adeshina I. Odugbemi
- South African National Bioinformatics Institute, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa;
| | - Mthobisi L. Ntuli
- Department of Mathematics, Faculty of Applied Science, Durban University of Technology, Durban 4000, South Africa;
| | - Rene Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.G.M.); (S.E.M.); (J.I.C.); (P.A.-K.); (R.K.)
- Correspondence: (S.C.U.); (H.M.K.)
| |
Collapse
|
3
|
Ozger ZB, Cihan P. A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine. Appl Soft Comput 2022; 116:108280. [PMID: 34931117 PMCID: PMC8673934 DOI: 10.1016/j.asoc.2021.108280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
B-cell epitope prediction research has received growing interest since the development of the first method. B-cell epitope identification with the aid of an accurate prediction method is one of the most important steps in epitope-based vaccine development, immunodiagnostic testing, antibody production, disease diagnosis, and treatment. Nevertheless, using experimental methods in epitope mapping is very time-consuming, costly, and labor-intensive. Therefore, although successful predictions with in silico methods are very important in epitope prediction, there are limited studies in this area. The aim of this study is to propose a new approach for successfully predicting B-cell epitopes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the SARS-CoV B-cell epitope prediction performances of different fuzzy learning classification models genetic cooperative competitive learning (GCCL), fuzzy genetics-based machine learning (GBML), Chi's method (CHI), Ishibuchi's method with weight factor (W), structural learning algorithm on vague environment (SLAVE) and the state-of-the-art ensemble fuzzy classification model were compared. The obtained results showed that the proposed ensemble approach has the lowest error in SARS-CoV B-cell epitope estimation compared to the base fuzzy learners (average error rates; ensemble fuzzy=8.33, GCCL=30.42, GBML=23.82, CHI=29.17, W=46.25, and SLAVE=20.42). SARS-CoV and SARS-CoV-2 have high genome similarities. Therefore, the most successful method determined for SARS-CoV B-cell epitope prediction was used in SARS-CoV-2 cell epitope prediction. Finally, the eventual B-cell epitope prediction results obtained for SARS-CoV-2 with the ensemble fuzzy classification model were compared with the epitope sequences predicted by the BepiPred server and immunoinformatics studies in the literature for the same protein sequences according to VaxiJen 2.0 scores. We hope that the developed epitope prediction method will help design effective vaccines and drugs against future outbreaks of the coronavirus family, especially SARS-CoV-2 and its possible mutations.
Collapse
Affiliation(s)
- Zeynep Banu Ozger
- Department of Computer Engineering, Sutcu Imam University, 46040, Kahramanmaras, Turkey
| | - Pınar Cihan
- Department of Computer Engineering, Tekirdag Namik Kemal University, 59860, Corlu, Tekirdag, Turkey
| |
Collapse
|
4
|
Mukherjee T, Behl T, Sharma S, Sehgal A, Singh S, Sharma N, Mathew B, Kaur J, Kaur R, Das M, Aleya L, Bungau S. Anticipated pharmacological role of Aviptadil on COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8109-8125. [PMID: 34846667 PMCID: PMC8630992 DOI: 10.1007/s11356-021-17824-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 04/16/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory factor, in boosting both innate and adaptive immunity. Since December 2019, SARS-Cov-2 was found responsible for the disease COVID-19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support Aviptadil's benefit. However, such drugs like Aviptadil in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Jasleen Kaur
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Ratandeep Kaur
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Mayukh Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
5
|
Rahban M, Stanek A, Hooshmand A, Khamineh Y, Ahi S, Kazim SN, Ahmad F, Muronetz V, Samy Abousenna M, Zolghadri S, Saboury AA. Infection of Human Cells by SARS-CoV-2 and Molecular Overview of Gastrointestinal, Neurological, and Hepatic Problems in COVID-19 Patients. J Clin Med 2021; 10:4802. [PMID: 34768321 PMCID: PMC8584649 DOI: 10.3390/jcm10214802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is the body's largest interface between the host and the external environment. People infected with SARS-CoV-2 are at higher risk of microbiome alterations and severe diseases. Recent evidence has suggested that the pathophysiological and molecular mechanisms associated with gastrointestinal complicity in SARS-CoV-2 infection could be explained by the role of angiotensin-converting enzyme-2 (ACE2) cell receptors. These receptors are overexpressed in the gut lining, leading to a high intestinal permeability to foreign pathogens. It is believed that SARS-CoV-2 has a lesser likelihood of causing liver infection because of the diminished expression of ACE2 in liver cells. Interestingly, an interconnection between the lungs, brain, and gastrointestinal tract during severe COVID-19 has been mentioned. We hope that this review on the molecular mechanisms related to the gastrointestinal disorders as well as neurological and hepatic manifestations experienced by COVID-19 patients will help scientists to find a convenient solution for this and other pandemic events.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Amirreza Hooshmand
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Yasaman Khamineh
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo 11517, Egypt;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| |
Collapse
|
6
|
Wang MK, Yue HY, Cai J, Zhai YJ, Peng JH, Hui JF, Hou DY, Li WP, Yang JS. COVID-19 and the digestive system: A comprehensive review. World J Clin Cases 2021; 9:3796-3813. [PMID: 34141737 PMCID: PMC8180220 DOI: 10.12998/wjcc.v9.i16.3796] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.
Collapse
Affiliation(s)
- Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Hai-Yan Yue
- Department of Digestive Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jin Cai
- Department of Geriatrics, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
- Department of Infectious Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Yu-Jia Zhai
- Department of Outpatient Services, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jian-Hui Peng
- Department of Quality Management, Guangdong Second Provincial General Hospital (Pazhou Campus), Guangzhou 510317, Guangdong Province, China
| | - Ju-Fen Hui
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Deng-Yong Hou
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Wei-Peng Li
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
7
|
Ilias I, Goulas S, Zabuliene L. Polycystic ovary syndrome: Pathways and mechanisms for possible increased susceptibility to COVID-19. World J Clin Cases 2021; 9:2711-2720. [PMID: 33969054 PMCID: PMC8058679 DOI: 10.12998/wjcc.v9.i12.2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In 75% of women with polycystic ovary syndrome (PCOS), insulin action is impaired. In obesity, visceral adipose tissue becomes dysfunctional: Chronic inflammation is favored over storage, contributing to the development of metabolic complications. PCOS, metabolic syndrome (MetSy) and non-alcoholic fatty liver disease (NAFLD) apparently share common pathogenic factors; these include abdominal adiposity, excess body weight and insulin resistance. Alterations in the gut microbiome have been noted in women with PCOS compared to controls; these may lead to deterioration of the intestinal barrier, increased gut mucosal permeability and immune system activation, hyperinsulinemia and glucose intolerance, which hamper normal ovarian function and follicular development (all being hallmarks of PCOS). It has been proposed that PCOS may entail higher susceptibility to coronavirus disease 2019 (COVID-19) via its associated comorbidities (NAFLD, obesity, MetSy and alterations in the gut microbiome). Studies have found an association between acute respiratory distress syndrome (seen in severe cases of COVID-19) and the intestinal microbiome. Furthermore, apparently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can gain entry to the gastrointestinal tract via locally-expressed angiotensin converting enzyme type 2 receptors. Excess body weight is associated with more severe COVID-19 and increased mortality. Although robust links between SARS-CoV-2 infection and PCOS/NAFLD/gut microbiome/metabolic consequences are yet to be confirmed, it seems that strategies for adapting the intestinal microbiome could help reduce the severity of COVID-19 in women with PCOS with or without NAFLD, MetSy or obesity.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Spyridon Goulas
- Department of Gastroenterology Unit, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| |
Collapse
|