1
|
Zhu J, Wen N, Chen W, Yu H. Mitochondrial ribosomal proteins: potential targets for cancer prognosis and therapy. Front Oncol 2025; 15:1586137. [PMID: 40371222 PMCID: PMC12074914 DOI: 10.3389/fonc.2025.1586137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components of mitochondrial ribosomes, responsible for translating proteins encoded by mitochondrial DNA and maintaining mitochondrial energy metabolism and function. Emerging evidence suggests that MRPs exhibit significant expression changes in multiple cancer types, profoundly affecting tumor biology through modulating oxidative stress levels, inducing metabolic reprogramming, disrupting cell cycle regulation, inhibiting apoptosis, promoting mitophagy, and remodeling the tumor microenvironment. Specifically, MRPs have been implicated in tumor cell proliferation, migration, invasion, and apoptosis, highlighting their potential as therapeutic targets. This review summarizes the multifaceted roles of MRPs in cancer, focusing on their impact on the tumor microenvironment and their potential as prognostic biomarkers and therapeutic targets. We also explore the implications of MRPs in precision oncology, particularly in patient stratification and the design of metabolic targeted therapies, offering new insights and research directions for the precise prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jianqing Zhu
- Postgraduate Department, Hebei North University, Zhangjiakou, China
| | - Na Wen
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Haotian Yu
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
2
|
Wu H, Zhu X, Zhou H, Sha M, Ye J, Yu H. Mitochondrial Ribosomal Proteins and Cancer. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:96. [PMID: 39859078 PMCID: PMC11766452 DOI: 10.3390/medicina61010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Mitochondria play key roles in maintaining cell life and cell function, and their dysfunction can lead to cell damage. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes and are assembled within the mitochondria. MRPs are pivotal components of the mitochondrial ribosomes, which are responsible for translating 13 mitochondrial DNA-encoded proteins essential for the mitochondrial respiratory chain. Recent studies have underscored the importance of MRPs in cancer biology, revealing their altered expression patterns in various types of cancer and their potential as both prognostic biomarkers and therapeutic targets. Herein, we review the current knowledge regarding the multiple functions of MRPs in maintaining the structure of the mitochondrial ribosome and apoptosis, their implications for cancer susceptibility and progression, and the innovative strategies being developed to target MRPs and mitoribosome biogenesis in cancer therapy. This comprehensive overview aims to provide insights into the role of MRPs in cancer biology and highlight promising strategies for future precision oncology.
Collapse
Affiliation(s)
- Huiyi Wu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Xiaowei Zhu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Huilin Zhou
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Min Sha
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| | - Jun Ye
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| |
Collapse
|
3
|
Bacon JM, Jones JL, Liu GS, Dickinson JL, Raspin K. Mitochondrial ribosomal proteins in metastasis and their potential use as prognostic and therapeutic targets. Cancer Metastasis Rev 2024; 43:1119-1135. [PMID: 39354291 PMCID: PMC11554709 DOI: 10.1007/s10555-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
The mitochondrion is an essential cell organelle known as the powerhouse of the cell. Mitochondrial ribosomal proteins (MRPs) are nuclear encoded, synthesised in the cytoplasm but perform their main functions in the mitochondria, which includes translation, transcription, cell death and maintenance. However, MRPs have also been implicated in cancer, particularly advanced disease and metastasis across a broad range of cancer types, where they play a central role in cell survival and progression. For some, their altered expression has been investigated as potential prognostic markers, and/or therapeutic targets, which is the focus of this review. Several therapies targeting MRPs are currently approved by the Food and Drug Administration and the European Medicines Agency for use in other diseases, revealing the opportunity for repurposing their use in advanced and metastatic cancer. Herein, we review the evidence supporting key MRPs as molecular drivers of advanced disease in multiple cancer types. We also highlight promising avenues for future use of MRPs as precision targets in the treatment of late-stage cancers for which there are currently very limited effective treatment options.
Collapse
Affiliation(s)
- Jasmine M Bacon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Johanna L Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
4
|
Hou W, Chen J, Wang Y. MRPL35 Induces Proliferation, Invasion, and Glutamine Metabolism in NSCLC Cells by Upregulating SLC7A5 Expression. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13799. [PMID: 38987867 PMCID: PMC11236733 DOI: 10.1111/crj.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mitochondrial ribosomal protein L35 (MRPL35) has been reported to contribute to the growth of non-small cell lung cancer (NSCLC) cells. However, the functions and mechanisms of MRPL35 on glutamine metabolism in NSCLC remain unclear. METHODS The detection of mRNA and protein of MRPL35, ubiquitin-specific protease 39 (USP39), and solute carrier family 7 member 5 (SLC7A5) was conducted using qRT-PCR and western blotting. Cell proliferation, apoptosis, and invasion were evaluated using the MTT assay, EdU assay, flow cytometry, and transwell assay, respectively. Glutamine metabolism was analyzed by detecting glutamine consumption, α-ketoglutarate level, and glutamate production. Cellular ubiquitination analyzed the deubiquitination effect of USP39 on MRPL35. An animal experiment was conducted for in vivo analysis. RESULTS MRPL35 was highly expressed in NSCLC tissues and cell lines, and high MRPL35 expression predicted poor outcome in NSCLC patients. In vitro analyses suggested that MRPL35 knockdown suppressed NSCLC cell proliferation, invasion, and glutamine metabolism. Moreover, MRPL35 silencing hindered tumor growth in vivo. Mechanistically, USP39 stabilized MRPL35 expression by deubiquitination and then promoted NSCLC cell proliferation, invasion, and glutamine metabolism. In addition, MRPL35 positively affected SLC7A5 expression in NSCLC cells in vitro and in vivo. Moreover, the anticancer effects of MRPL35 silencing could be rescued by SLC7A5 overexpression in NSCLC cells. CONCLUSION MRPL35 expression was stabilized by USP39-induced deubiquitination in NSCLC cells, and knockdown of MRPL35 suppressed NSCLC cell proliferation, invasion, and glutamine metabolism in vitro and impeded tumor growth in vivo by upregulating SLC7A5, providing a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wei Hou
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| | - Juan Chen
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| | - Yaoyuan Wang
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| |
Collapse
|
5
|
Zhao C, Chen L, Jin Z, Liu H, Ma C, Zhou H, Xu L, Zhou S, Shi Y, Li W, Chen Y, Dou C, Wang X. Knockdown of MRPL35 promotes cell apoptosis and inhibits cell proliferation in non-small-cell lung cancer. BMC Pulm Med 2023; 23:507. [PMID: 38093266 PMCID: PMC10720070 DOI: 10.1186/s12890-023-02677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a major pathological type of lung cancer. However, its pathogenesis remains largely unclear. MRPL35 is a regulatory subunit of the mitoribosome, which can regulate the assembly of cytochrome c oxidases and plays an important role in the occurrence of NSCLC. METHODS The expression of MRPL35 in NSCLC was detected by tissue microarray and immunohistochemistry. H1299 cells were infected with lentivirus to knockdown MRPL35, and the cells were subjected to crystal violet staining to assess the results of colony formation assays. A549 cells were infected by lentiviral particles-expressing shMRPL35 or shControl, and then subcutaneously injected into nude mice. Tumorigenesis in mice was detected by in vivo imaging. The potential pathway of MRPL35 in NSCLC was assessed by Western blotting. RESULTS MRPL35 was over-expressed in NSCLC tissue compared to para-cancerous and normal tissues. Knockdown of MRPL35 suppressed cell proliferation and decreased NSCLC progression both in vitro and in vivo. The possible molecular mechanisms were also clarified, which indicated that MRPL35 could be involved in cell apoptosis and proliferation by modulating the expression levels of CDK1, BIRC5, CHEK1, STMN1 and MCM2. Knockdown of MRPL35 activated p53 signaling pathway and inhibited cell cycle regulation. CONCLUSIONS The oncogenic role of MRPL35 in NSCLC was potentially mediated through the cell cycle regulatory genes such as BIRC5, STMN1, CDK1, CHEK1 and MCM2, as well as activation of P53 signaling pathway.
Collapse
Affiliation(s)
- Chengling Zhao
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Lei Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Zhixin Jin
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Haitao Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chao Ma
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Hangtian Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Lingling Xu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Sihui Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yan Shi
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wei Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Yuqing Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chengli Dou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| |
Collapse
|
6
|
Zhang Z, Sun J, Jin C, Zhang L, Wu L, Tian G. Identification and validation of a fatty acid metabolism gene signature for the promotion of metastasis in liver cancer. Oncol Lett 2023; 26:457. [PMID: 37736554 PMCID: PMC10509777 DOI: 10.3892/ol.2023.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Metastasis is a fatal status for liver cancer, and the identification of an effective prediction model and promising therapeutic target is essential. Given the known relationship between fatty acid (FA) metabolism and the liver, the present study aimed to investigate dysregulation of genes associated with FA metabolism in liver cancer. Bioinformatics analyses were performed on data from patients with hepatocellular carcinoma (HCC) obtained from The Cancer Genome Atlas database using R software packages. Online public tools such as the Human Protein Atlas, Tumor Immune Single-Cell Hub and the University of Alabama at Birmingham Cancer Data Analysis portal were also utilized. Some essential results were further verified using in vitro experiments using HepG2 liver cancer cells. A signature consisting of three genes associated with the progression and prognosis of HCC and FA metabolism was identified. When samples were scored based on the expression of these genes and divided according to the median value, the higher score group showed a worse outcome and repressive immune microenvironment than the lower score group. Downstream pathways such as hypoxia, IL6/JAK/STAT3 and epithelial-mesenchymal transition were found to be significantly activated in the higher score group. As the core factor in the signature, mitochondrial ribosomal protein L35 (MRPL35) was found to be upregulated in HCC and to have certain impacts on the dysregulation of effective immunity. Further investigations and in vitro experiments indicated that MRPL35 facilitates the migration and invasion abilities of liver cancer, and the resistance of HCC to treatment. These findings have important implications regarding the characteristics and mechanisms of metastasis in liver cancer, and provide a promising signature based on FA metabolism-related genes that may be used to predict outcomes and explored as a novel therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Zhenshan Zhang
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, P.R. China
| | - Jun Sun
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chao Jin
- Department of Ocean, Shandong University, Weihai, Shandong 264209, P.R. China
- Department of Pharmacy, Zhejiang Qianji Fang Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 311710, P.R. China
| | - Likun Zhang
- Department of Clinical Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, P.R. China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Gendong Tian
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
7
|
Bao S, Wang X, Li M, Gao Z, Zheng D, Shen D, Liu L. Potential of Mitochondrial Ribosomal Genes as Cancer Biomarkers Demonstrated by Bioinformatics Results. Front Oncol 2022; 12:835549. [PMID: 35719986 PMCID: PMC9204274 DOI: 10.3389/fonc.2022.835549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing and bioinformatics analyses have clearly revealed the roles of mitochondrial ribosomal genes in cancer development. Mitochondrial ribosomes are composed of three RNA components encoded by mitochondrial DNA and 82 specific protein components encoded by nuclear DNA. They synthesize mitochondrial inner membrane oxidative phosphorylation (OXPHOS)-related proteins and participate in various biological activities via the regulation of energy metabolism and apoptosis. Mitochondrial ribosomal genes are strongly associated with clinical features such as prognosis and foci metastasis in patients with cancer. Accordingly, mitochondrial ribosomes have become an important focus of cancer research. We review recent advances in bioinformatics research that have explored the link between mitochondrial ribosomes and cancer, with a focus on the potential of mitochondrial ribosomal genes as biomarkers in cancer.
Collapse
Affiliation(s)
- Shunchao Bao
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Mo Li
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhao Gao
- Nuclear Medicine Department, Second Hospital of Jilin University, Changchun, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dihan Shen
- Medical Research Center, Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Yuan L, Yang Y, Li X, Zhou X, Du YH, Liu WJ, Zhang L, Yu L, Ma TT, Li JX, Chen Y, Nan Y. 18β-glycyrrhetinic acid regulates mitochondrial ribosomal protein L35-associated apoptosis signaling pathways to inhibit proliferation of gastric carcinoma cells. World J Gastroenterol 2022; 28:2437-2456. [PMID: 35979263 PMCID: PMC9258276 DOI: 10.3748/wjg.v28.i22.2437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
AIM To explore the mechanism by which 18β-glycyrrhetinic acid (18β-GRA) regulates mitochondrial ribosomal protein L35 (MRPL35) related signal proteins to inhibit the proliferation of GC cells.
METHODS Cell counting kit-8 assay was used to detect the effects of 18β-GRA on the survival rate of human normal gastric mucosal cell line GES-1 and the proliferation of GC cell lines MGC80-3 and BGC-823. The apoptosis and cell cycle were assessed by flow cytometry. Cell invasion and migration were evaluated by Transwell assay, and cell scratch test was used to detect cell migration. Furthermore, a tumor model was established by hypodermic injection of 2.5 × 106 BGC-823 cells at the selected positions of BALB/c nude mice to determine the effect of 18β-GRA on GC cell proliferation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect MRPL35 expression in the engrafted tumors in mice. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography–tandem mass spectrometry to screen for differentially expressed proteins (DEPs) extracted from GC cells and control cells after 18β-GRA intervention. A detailed bioinformatics analysis of these DEPs was performed, including Gene Ontology annotation and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and so on. Moreover, STRING database (https://string-db.org/) was used to predict protein-protein interaction (PPI) relationships and Western blot was used to detect the expression of proteins of interest in GC cells.
RESULTS The results indicated that 18β-GRA could inhibit the proliferation of GC cells in a dose- and time-dependent manner. It could induce GC cell apoptosis and arrest the cell cycle at G0/G1 phase. The proportion of cells arrested at S phase decreased with the increase of 18-GRA dose, and the migration and invasiveness of GC cells were inhibited. The results of animal experiments showed that 18β-GRA could inhibit tumor formation in BALB/c nude mice, and qRT-PCR results showed that MRPL35 expression level was significantly reduced in the engrafted tumors in mice. Using TMT technology, 609 DEPs, among which 335 were up-regulated and 274 were down-regulated, were identified in 18β-GRA intervention compared with control. We found that the intervention of 18β-GRA in GC cells involved many important biological processes and signaling pathways, such as cellular processes, biological regulation, and TP53 signaling pathway. Notably, after the drug intervention, MRPL35 expression was significantly down-regulated (P = 0.000247), TP53 expression was up-regulated (P = 0.02676), and BCL2L1 was down-regulated (P = 0.01699). Combined with the Retrieval of Interacting Genes/Proteins database, we analyzed the relationship between MRPL35, TP53, and BCL2L1 signaling proteins, and we found that COPS5, BAX, and BAD proteins can form a PPI network with MRPL35, TP53, and BCL2L1. Western blot analysis confirmed the intervention effect of 18β-GRA on GC cells, MRPL35, TP53, and BCL2L1 showed dose-dependent up/down-regulation, and the expression of COPS5, BAX, and BAD also increased/decreased with the change of 18β-GRA concentration.
CONCLUSION 18β-GRA can inhibit the proliferation of GC cells by regulating MRPL35, COPS5, TP53, BCL2L1, BAX, and BAD.
Collapse
Affiliation(s)
- Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Yu
- Department of Infectious Diseases, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ting-Ting Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Xin Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
9
|
Zeng Z, Zhang X, Jiang CQ, Zhang YG, Wu X, Li J, Tang S, Li L, Gu LJ, Xie XY, Jiang YA. Identifying novel therapeutic targets in gastric cancer using genome-wide CRISPR-Cas9 screening. Oncogene 2022; 41:2069-2078. [PMID: 35177812 DOI: 10.1038/s41388-022-02177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Genome-scale CRISPR-Cas9 screening technology is a powerful tool to systematically identify genes essential for cancer cell survival. Herein, TKOv3, a genome-scale CRISPR-Cas9 knock-out library, was screened in the gastric cancer (GC) cells, and relevant validation experiments were performed. We obtained 854 essential genes for the AGS cell line, and 184 were novel essential genes. After knocking down essential genes: SPC25, DHX37, ABCE1, SNRPB, TOP3A, RUVBL1, CIT, TACC3 and MTBP, cell viability and proliferation were significantly decreased. Then, we analysed the detected essential genes at different time points and proved more characteristic genes might appear with the extension of selection. After progressive selection using a series of open datasets, 41 essential genes were identified as potential drug targets. Among them, methyltransferase 1 (METTL1) was over expressed in GC tissues. High METTL1 expression was associated with poor prognosis among 3 of 6 GC cohorts. Furthermore, GC cells growth was significantly inhibited after the down-regulation of METTL1 in vitro and in vivo. Function analysis revealed that METTL1 might play a role in the cell cycle through AKT/STAT3 pathways. In conclusion, compared with existing genome-scale screenings, we obtained 184 novel essential genes. Among them, METTL1 was validated as a potential therapeutic target of GC.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cong-Qing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Gang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Wu
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Jin Li
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Shan Tang
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiao-Yu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ying-An Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|