1
|
Ma YY, Gao W, Wang H, Xu H, Pan D, Wang JK, Xu P, Wang HL, Pang K. Integrated ceRNAs regulating relationship and bioinformatics analysis to study the molecular mechanisms of the inhibition of puerarin on bladder cancer cell. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:400-420. [PMID: 39133645 DOI: 10.1080/10286020.2024.2390508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 02/21/2025]
Abstract
Based on previous experiments, we demonstrated puerarin inhibited the proliferation of BC T24 cells. To further explore the molecular mechanisms, whole transcriptome sequencing combined with bioinformatics analysis was performed. The results showed puerarin significantly inhibited T24 proliferation and pathway enrichment analysis of differentially expressed RNAs were mainly enriched in Cell cycle, PI3K/AKT, Ras family chromatin remodeling. lncRNAs and circRNAs may regulate miRNAs, thereby regulating the expression of ITGA1, PAK2 and UTRN. The predicted upstream transcription factor ERG and puerarin were well docked, which may be one of the underlying mechanisms by which puerarin inhibiting BC cells.
Collapse
Affiliation(s)
- Yu-Yang Ma
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Wen Gao
- Department of Cardiology, The fourth People's Hospital of Jinan, Jinan 250031, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Hao Xu
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Deng Pan
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Jing-Kai Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Peng Xu
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Hai-Luo Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
- Department of Urology, Peixian People's Hospital, Xuzhou 221600, China
| |
Collapse
|
2
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
3
|
Miao X, Wang F, Yunus MA, Ismail IS, Wang T. Long noncoding RNA KCNMA1-AS2 regulates the function of colorectal cancer cells and sponges miR-1227-5p. BMC Cancer 2024; 24:857. [PMID: 39026221 PMCID: PMC11256649 DOI: 10.1186/s12885-024-12608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Many long noncoding RNAs (lncRNAs) with altered expression significantly influence colorectal cancer (CRC) progression and behavior. The functions of many lncRNAs in CRC are not clear yet. This study aimed to discover novel lncRNA entities and comprehensively examine and validate their roles and underlying molecular mechanisms in CRC. METHODS Tissue samples, both tumourous and non-tumourous, from three CRC patients were submitted for sequencing. Following expression validation in samples from ten patients and four CRC cell lines. The lncRNA KCNMA1-AS2 was synthesized by In-vitro transcription RNA synthesis and the lncRNA was directly transfected into CRC cell lines to overexpress. Functional assays including MTT proliferation assay, Annexin-V/propidium iodide apoptosis assay, wound healing migration assay and cell cycle assays were performed to evaluate the effect of overexpression of KCNMA1-AS2. Furthermore, the binding of KCNMA1-AS2 to miR-1227-5p was confirmed using dual luciferase reporter assays and qPCR analyses. Subsequent bioinformatics analyses identified 58 potential downstream targets of miR-1227-5p across three databases. RESULTS In this study, we identified the lncRNA KCNMA1-AS2, the expression of which was down-regulated consistently in cancer tissues and CRC cell lines compared to non-cancerous tissues. The overexpression of lncRNA KCNMA1-AS2 led to significant reduction in CRC cell proliferation and migration, increase in cell apoptosis, and more cells arrested in S phase. Additionally, the interaction between KCNMA1-AS2 and miR-1227-5p was confirmed through dual luciferase reporter assay and qPCR analysis. It is also putatively predicted that MTHFR and ST8SIA2 may be linked to CRC based on bioinformatics analyses. CONCLUSIONS LncRNA KCNMA1-AS2 exhibited distinct gene expression patterns in both CRC tissue and cell lines, impacting various cellular functions while also acting as a sponge for miR-1227-5p.The findings spotlight lncRNA KCNMA1-AS2 as a potential marker for diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xinzhi Miao
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang, Henan province, 453003, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, Henan province, 453003, China
| | - Fang Wang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, Henan province, 453003, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan province, 453003, China
| | - Muhammad Amir Yunus
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia.
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, Henan province, 453003, China.
| |
Collapse
|
4
|
Wu Q, Fu X, He X, Liu J, Li Y, Ou C. Experimental prognostic model integrating N6-methyladenosine-related programmed cell death genes in colorectal cancer. iScience 2024; 27:108720. [PMID: 38299031 PMCID: PMC10829884 DOI: 10.1016/j.isci.2023.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Colorectal cancer (CRC) intricacies, involving dysregulated cellular processes and programmed cell death (PCD), are explored in the context of N6-methyladenosine (m6A) RNA modification. Utilizing the TCGA-COADREAD/CRC cohort, 854 m6A-related PCD genes are identified, forming the basis for a robust 10-gene risk model (CDRS) established through LASSO Cox regression. qPCR experiments using CRC cell lines and fresh tissues was performed for validation. The CDRS served as an independent risk factor for CRC and showed significant associations with clinical features, molecular subtypes, and overall survival in multiple datasets. Moreover, CDRS surpasses other predictors, unveiling distinct genomic profiles, pathway activations, and associations with the tumor microenvironment. Notably, CDRS exhibits predictive potential for drug sensitivity, presenting a novel paradigm for CRC risk stratification and personalized treatment avenues.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
5
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|