1
|
Khoury P, Wechsler JB. Role of Mast Cells in Eosinophilic Gastrointestinal Diseases. Immunol Allergy Clin North Am 2024; 44:311-327. [PMID: 38575226 PMCID: PMC11220468 DOI: 10.1016/j.iac.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Mast cells play a central role in the pathogenesis of eosinophilic gastrointestinal disorders (EGIDs), including eosinophilic esophagitis. Their interactions with immune and structural cells, involvement in tissue remodeling, and contribution to symptoms make them attractive targets for therapeutic intervention. More is being discovered regarding the intricate interplay of mast cells and eosinophils. Recent studies demonstrating that depletion of eosinophils is insufficient to improve symptoms of EGIDs have raised the question of whether other cells may play a role in symptomatology and pathogenesis of EGIDs.
Collapse
Affiliation(s)
- Paneez Khoury
- Human Eosinophil Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 12C103, Bethesda, MD 20892, USA.
| | - Joshua B Wechsler
- Simpson-Querrey 10-518, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 65, Chicago, IL 60611, USA
| |
Collapse
|
2
|
MacDonald CA, Qian H, Pundir P, Kulka M. Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. FRONTIERS IN ALLERGY 2023; 4:1109717. [PMID: 36970068 PMCID: PMC10036836 DOI: 10.3389/falgy.2023.1109717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Sodium butyrate (NaBu) is a class I histone deacetylase inhibitor (HDACi) that can impede the proliferation of transformed cells. Although some HDACi downregulate the expression of the stem cell factor receptor (KIT/CD117), the effect of NaBu on KIT expression and human mast cell proliferation requires further elucidation. In this study, we examined the effects of NaBu on three transformed human mast cell lines, HMC-1.1, HMC-1.2 and LAD2. NaBu (100 µM) inhibited the proliferation and metabolic activity of all three cell lines without significantly affecting their viability, suggesting that although the cells had ceased to divide, they were not yet undergoing apoptosis. Cell cycle analysis using the cell-permeant dye, propidium iodide, indicated that NaBu significantly blocked the cell cycle progression of HMC-1.1 and HMC-1.2 from G1 to G2/M phases. Furthermore, NaBu downregulated the expression of C-KIT mRNA and KIT protein expression in all three cell lines, but this effect was most significant in the HMC-1.1 and HMC-1.2, both of which harbour activating mutations in KIT, which proliferate more rapidly than LAD2. These data support earlier observations showing that human mast cell lines are sensitive to histone deacetylase inhibition. However, our data presents the novel observation that inhibition of cell proliferation by NaBu was not associated with a loss in cell viability but rather an arrest of the cell cycle. Higher concentrations of NaBu led to modest increases in histamine content, tryptase expression, and granularity. In conclusion, NaBu treatment of human mast cell lines led to a modest enhancement of the hallmarks of mature mast cells.
Collapse
Affiliation(s)
- Clayton A. MacDonald
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
- Correspondence: Marianna Kulka
| |
Collapse
|