1
|
Grootjans Y, Harrewijn A, Fornari L, Janssen T, de Bruijn ERA, van Atteveldt N, Franken IHA. Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience. Dev Cogn Neurosci 2024; 67:101391. [PMID: 38759529 PMCID: PMC11127236 DOI: 10.1016/j.dcn.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.
Collapse
Affiliation(s)
- Yvette Grootjans
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Anita Harrewijn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Laura Fornari
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Tieme Janssen
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
2
|
Jansen M, Overgaauw S, de Bruijn ERA. L-DOPA and oxytocin influence the neural correlates of performance monitoring for self and others. Psychopharmacology (Berl) 2024; 241:1079-1092. [PMID: 38286857 PMCID: PMC11031497 DOI: 10.1007/s00213-024-06541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
RATIONALE The ability to monitor the consequences of our actions for others is imperative for flexible and adaptive behavior, and allows us to act in a (pro)social manner. Yet, little is known about the neurochemical mechanisms underlying alterations in (pro)social performance monitoring. OBJECTIVE The aim of this functional magnetic resonance imaging (fMRI) study was to improve our understanding of the role of dopamine and oxytocin and their potential overlap in the neural mechanisms underlying performance monitoring for own versus others' outcomes. METHOD Using a double-blind placebo-controlled cross-over design, 30 healthy male volunteers were administered oxytocin (24 international units), the dopamine precursor L-DOPA (100 mg + 25 mg carbidopa), or placebo in three sessions. Participants performed a computerized cannon shooting game in two recipient conditions where mistakes resulted in negative monetary consequences for (1) oneself or (2) an anonymous other participant. RESULTS Results indicated reduced error-correct differentiation in the ventral striatum after L-DOPA compared to placebo, independent of recipient. Hence, pharmacological manipulation of dopamine via L-DOPA modulated performance-monitoring activity in a brain region associated with reward prediction and processing in a domain-general manner. In contrast, oxytocin modulated the BOLD response in a recipient-specific manner, such that it specifically enhanced activity for errors that affected the other in the pregenual anterior cingulate cortex (pgACC), a region previously implicated in the processing of social rewards and prediction errors. Behaviorally, we also found reduced target sizes-indicative of better performance-after oxytocin, regardless of recipient. Moreover, after oxytocin lower target sizes specifically predicted higher pgACC activity when performing for others. CONCLUSIONS These different behavioral and neural patterns after oxytocin compared to L-DOPA administration highlight a divergent role of each neurochemical in modulating the neural mechanisms underlying social performance monitoring.
Collapse
Affiliation(s)
- Myrthe Jansen
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands.
| | - Sandy Overgaauw
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Ellen R A de Bruijn
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| |
Collapse
|
3
|
Demaria F, Pontillo M, Bellantoni D, Di Vincenzo C, Vicari S. Phenomenological Considerations of the World of the Obsessive Patient. J Clin Med 2023; 12:4193. [PMID: 37445230 DOI: 10.3390/jcm12134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Despite significant scientific advances in research on obsessive-compulsive disorder (OCD), the psychological and behavioral symptoms of this pathological condition remain hard to understand, until they seem paradoxical. The present work seeks to consider the significance and potential contribution of a phenomenological reading of OCD and how phenomenalism has influenced some cognitive models of this disorder. Transcendental phenomenology is a philosophical approach that attaches primary importance to intuitive experience and considers all phenomena intrinsically associated with the subject's inner world. Thus, the subject's intuition is considered the starting point for understanding their essential experience. This approach has had a profound influence on modern cognitive sciences. Among current cognitive models, post-rationalist cognitivism and cognitive neuropsychological psychotherapy seem most effective in capturing the world experiences of OCD patients. Both apply a phenomenological approach to identify these experiences, which are typically characterized by hyper-reflexivity, at the expense of 'natural evidence.' The models have found that OCD patients experience the world emotionally as a sterile set of rules, and this experience determines their suffering.
Collapse
Affiliation(s)
- Francesco Demaria
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Maria Pontillo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Domenica Bellantoni
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cristina Di Vincenzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
4
|
Bernardi D, Shannahoff-Khalsa D, Sale J, Wright JA, Fadiga L, Papo D. The time scales of irreversibility in spontaneous brain activity are altered in obsessive compulsive disorder. Front Psychiatry 2023; 14:1158404. [PMID: 37234212 PMCID: PMC10208430 DOI: 10.3389/fpsyt.2023.1158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023] Open
Abstract
We study how obsessive-compulsive disorder (OCD) affects the complexity and time-reversal symmetry-breaking (irreversibility) of the brain resting-state activity as measured by magnetoencephalography (MEG). Comparing MEG recordings from OCD patients and age/sex matched control subjects, we find that irreversibility is more concentrated at faster time scales and more uniformly distributed across different channels of the same hemisphere in OCD patients than in control subjects. Furthermore, the interhemispheric asymmetry between homologous areas of OCD patients and controls is also markedly different. Some of these differences were reduced by 1-year of Kundalini Yoga meditation treatment. Taken together, these results suggest that OCD alters the dynamic attractor of the brain's resting state and hint at a possible novel neurophysiological characterization of this psychiatric disorder and how this therapy can possibly modulate brain function.
Collapse
Affiliation(s)
- Davide Bernardi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| | - David Shannahoff-Khalsa
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
- Center for Integrative Medicine, University of California, San Diego, La Jolla, CA, United States
- The Khalsa Foundation for Medical Science, Del Mar, CA, United States
| | - Jeff Sale
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jon A. Wright
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Jansen M, Van der Does AJW, De Rover M, De Bruijn ERA, Hamstra DA. Hormonal status effects on the electrophysiological correlates of performance monitoring in women. Psychoneuroendocrinology 2023; 149:106006. [PMID: 36566721 DOI: 10.1016/j.psyneuen.2022.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Fluctuations in ovarian hormones are thought to play a role in the increased prevalence of mood and anxiety disorders in women. Error-related negativity (ERN) and error positivity (Pe) are two putative electrophysiological biomarkers for these internalizing disorders. We investigated whether female hormonal status, specifically menstrual cycle phase and oral contraceptive (OC) use, impact ERN and Pe. Additionally, we examined whether the relationship between the ERN and negative affect (NA) was moderated by hormonal status and tested whether the ERN mediated the relation between ovarian hormones and NA. Participants were healthy, pre-menopausal women who were naturally cycling (NC) or using OCs. Using a counterbalanced within-subject design, all participants performed a speeded-choice reaction-time task twice while undergoing electroencephalography measurements. NC women (N = 42) performed this task during the early follicular and midluteal phase (when estrogen and progesterone are both low and both high, respectively), while OC users (N = 42) performed the task during active OC use and during their pill-free week. Estradiol and progesterone levels were assessed in saliva. Comparing the two cycle phases within NC women revealed no differences in the (Δ)ERN, (Δ)Pe or NA. We did observe a negative relation between phase-related changes in the ΔERN and changes in NA. Mediation analysis additionally showed that phase-related changes in estradiol were indirectly and negatively related to NA through a reduction of ΔERN amplitudes. When comparing active OC users with NC women, we observed increased ΔPe- but not (Δ)ERN amplitudes in the former group. No evidence was found for moderating effects of menstrual cycle phase or OC use on the relation between the ERN and NA. These findings suggest that hormonal status may impact the neural correlates of performance monitoring and error sensitivity, and that this could be a potential mechanism through which ovarian hormones influence mood.
Collapse
Affiliation(s)
- M Jansen
- Department of Clinical Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands.
| | - A J W Van der Does
- Department of Clinical Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - M De Rover
- Department of Clinical Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - E R A De Bruijn
- Department of Clinical Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - D A Hamstra
- Department of Clinical Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|
6
|
Balzus L, Klawohn J, Elsner B, Schmidt S, Brandt SA, Kathmann N. Non-invasive brain stimulation modulates neural correlates of performance monitoring in patients with obsessive-compulsive disorder. NEUROIMAGE: CLINICAL 2022; 35:103113. [PMID: 35870380 PMCID: PMC9421486 DOI: 10.1016/j.nicl.2022.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 07/10/2022] [Indexed: 12/02/2022] Open
Abstract
Effects of tDCS on performance monitoring examined in OCD and healthy individuals. A preregistered, randomized, sham-controlled tDCS–EEG study was conducted. Cathodal tDCS over the pre-SMA reduced the error-related negativity (ERN). Correct-response negativity was enhanced, error positivity reduced by cathodal tDCS. The findings substantiate the role of the ERN as a target for new interventions.
Overactive performance monitoring, as reflected by enhanced neural responses to errors (the error-related negativity, ERN), is considered a biomarker for obsessive-compulsive disorder (OCD) and may be a promising target for novel treatment approaches. Prior research suggests that non-invasive brain stimulation with transcranial direct current stimulation (tDCS) may reduce the ERN in healthy individuals, yet no study has investigated its efficacy in attenuating the ERN in OCD. In this preregistered, randomized, sham-controlled, crossover study, we investigated effects of tDCS on performance monitoring in patients with OCD (n = 28) and healthy individuals (n = 28). Cathodal and sham tDCS was applied over the presupplementary motor area (pre-SMA) in two sessions, each followed by electroencephalogram recording during a flanker task. Cathodal tDCS reduced the ERN amplitude compared to sham tDCS, albeit this effect was only marginally significant (p = .052; mean difference: 0.86 μV). Additionally, cathodal tDCS reduced the correct-response negativity and increased the error positivity. These neural modulations were not accompanied by behavioral changes. Moreover, we found no evidence that the tDCS effect was more pronounced in the patient group. In summary, our findings indicate that tDCS over the pre-SMA modulates neural correlates of performance monitoring across groups. Therefore, this study represents a valuable starting point for future research to determine whether repeated tDCS application induces a more pronounced ERN attenuation and normalizes aberrant performance monitoring in the long term, thereby potentially alleviating obsessive-compulsive symptoms and providing a psychophysiological intervention strategy for individuals who do not benefit sufficiently from existing interventions.
Collapse
|
7
|
Overmeyer R, Berghäuser J, Dieterich R, Wolff M, Goschke T, Endrass T. The Error-Related Negativity Predicts Self-Control Failures in Daily Life. Front Hum Neurosci 2021; 14:614979. [PMID: 33584226 PMCID: PMC7873054 DOI: 10.3389/fnhum.2020.614979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Adaptive behavior critically depends on performance monitoring (PM), the ability to monitor action outcomes and the need to adapt behavior. PM-related brain activity has been linked to guiding decisions about whether action adaptation is warranted. The present study examined whether PM-related brain activity in a flanker task, as measured by electroencephalography (EEG), was associated with adaptive behavior in daily life. Specifically, we were interested in the employment of self-control, operationalized as self-control failures (SCFs), and measured using ecological momentary assessment. Analyses were conducted using an adaptive elastic net regression to predict SCFs from EEG in a sample of 131 participants. The model was fit using within-subject averaged response-locked EEG activity at each electrode and time point within an epoch surrounding the response. We found that higher amplitudes of the error-related negativity (ERN) were related to fewer SCFs. This suggests that lower error-related activity may relate to lower recruitment of interventive self-control in daily life. Altered cognitive control processes, like PM, have been proposed as underlying mechanisms for various mental disorders. Understanding how alterations in PM relate to regulatory control might therefore aid in delineating how these alterations contribute to different psychopathologies.
Collapse
Affiliation(s)
- Rebecca Overmeyer
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Julia Berghäuser
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Raoul Dieterich
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Max Wolff
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Thomas Goschke
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Neuroimaging Centre, Technische Universität Dresden, Dresden, Germany
| | - Tanja Endrass
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Neuroimaging Centre, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|