1
|
Zhang Y, Qiu Y, Lin S, Zheng X, Tan L, Liu X, Huang R. The role of the human cerebellum in representing social behavior sequences: An SDM-PSI meta-analysis. Neuroimage 2025:121277. [PMID: 40389146 DOI: 10.1016/j.neuroimage.2025.121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025] Open
Abstract
Although the cerebellum has been widely considered to be a motor structure, recent studies have shown that it is also involved in constructing sequences of social events. However, little is known about (1) whether explicit sequencing processes elicit stronger cerebellar activation than non-sequencing processes, (2) whether the cerebellar sequence detection function is more applicable to social or non-social contexts, or (3) whether the cerebellum exhibits consistent or heterogeneous activation patterns in representing behavioral sequences across contexts. Thus, we conducted a meta-analysis of 13 neuroimaging studies by using a seed-based d mapping with permutation of subject images (SDM-PSI) approach. The results showed that the cerebellar Crus I and II were activated more strongly in social sequencing processes than in social non-sequencing, indicating that sequence detection is a basic function of the cerebellum. In sequencing processes, the cerebellar posterior Crus II responded more strongly to social than to non-social events, suggesting that the sequencing function of this cerebellar sub-region is more applicable to social contexts. The posterior cerebellum exhibited heterogeneous activation patterns, with distinct functional specializations in Crus I and Crus II. These findings provide a deeper understanding of the functions of the cerebellar regions in social cognition.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Yidan Qiu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Shuting Lin
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xiaoyu Zheng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Liwei Tan
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xia Liu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, Guangdong, China.
| |
Collapse
|
2
|
Van Overwalle F. Social and emotional learning in the cerebellum. Nat Rev Neurosci 2024; 25:776-791. [PMID: 39433716 DOI: 10.1038/s41583-024-00871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
The posterior cerebellum has a critical role in human social and emotional learning. Three systems and related neural networks support this cerebellar function: a biological action observation system as part of an extended sensorimotor integration network, a mentalizing system for understanding a person's mental and emotional state subserved by a mentalizing network, and a limbic network supporting core emotional (dis)pleasure and arousal processes. In this Review, I describe how these systems and networks support social and emotional learning via functional reciprocal connections initiating and terminating in the posterior cerebellum and cerebral neocortex. It is hypothesized that a major function of the posterior cerebellum is to identify and encode temporal sequences of events, which might help to fine-tune and automatize social and emotional learning. I discuss research using neuroimaging and non-invasive stimulation that provides converging evidence for this hypothesized function of cerebellar sequencing, but also other potential functional accounts of the posterior cerebellum's role in these social and emotional processes.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Li M, Pu M, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. One step too far: social cerebellum in norm-violating navigation. Soc Cogn Affect Neurosci 2024; 19:nsae027. [PMID: 38536051 PMCID: PMC11037276 DOI: 10.1093/scan/nsae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Social norms are pivotal in guiding social interactions. The current study investigated the potential contribution of the posterior cerebellum, a critical region involved in perceiving and comprehending the sequential dynamics of social actions, in detecting actions that either conform to or deviate from social norms. Participants engaged in a goal-directed task in which they observed others navigating towards a goal. The trajectories demonstrated either norm-violating (trespassing forbidden zones) or norm-following behaviors (avoiding forbidden zones). Results revealed that observing social norm-violating behaviors engaged the bilateral posterior cerebellar Crus 2 and the right temporoparietal junction (TPJ) from the mentalizing network, and the parahippocampal gyrus (PHG) to a greater extent than observing norm-following behaviors. These mentalizing regions were also activated when comparing social sequences against non-social and non-sequential control conditions. Reproducing norm-violating social trajectories observed earlier, activated the left cerebellar Crus 2 and the right PHG compared to reproducing norm-following trajectories. These findings illuminate the neural mechanisms in the cerebellum associated with detecting norm transgressions during social navigation, emphasizing the role of the posterior cerebellum in detecting and signaling deviations from anticipated sequences.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Min Pu
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal 14558, Germany
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
4
|
Li M, Haihambo N, Bylemans T, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. Create your own path: social cerebellum in sequence-based self-guided navigation. Soc Cogn Affect Neurosci 2024; 19:nsae015. [PMID: 38554289 PMCID: PMC10981473 DOI: 10.1093/scan/nsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 04/01/2024] Open
Abstract
Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Qianying Ma
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, the Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
5
|
Haihambo N, Ma Q, Baetens K, Bylemans T, Heleven E, Baeken C, Deroost N, Van Overwalle F. Two is company: The posterior cerebellum and sequencing for pairs versus individuals during social preference prediction. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1482-1499. [PMID: 37821755 PMCID: PMC10684703 DOI: 10.3758/s13415-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Tom Bylemans
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
6
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. Neurosci Biobehav Rev 2023; 146:105045. [PMID: 36646260 DOI: 10.1016/j.neubiorev.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Elien Heleven
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Kris Baetens
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natacha Deroost
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
7
|
Pu M, Ma Q, Haihambo N, Li M, Baeken C, Baetens K, Deroost N, Heleven E, Van Overwalle F. Dynamic causal modeling of cerebello-cerebral connectivity when sequencing trait-implying actions. Cereb Cortex 2022; 33:6366-6381. [PMID: 36573440 DOI: 10.1093/cercor/bhac510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.
Collapse
Affiliation(s)
- Min Pu
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Qianying Ma
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Naem Haihambo
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Meijia Li
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Chris Baeken
- Ghent University Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, , 9000, Ghent , Belgium
- University Hospital (UZBrussel) Department of Psychiatry, , 1090, Brussels , Belgium
- Eindhoven University of Technology , Department of Electrical Engineering, 5612, Eindhoven, Th e Netherlands
| | - Kris Baetens
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Natacha Deroost
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Elien Heleven
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Frank Van Overwalle
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| |
Collapse
|
8
|
Pu M, Heleven E, Ma Q, Bylemans T, Baetens K, Haihambo NP, Baeken C, Deroost N, Van Overwalle F. The posterior cerebellum and social action sequences in a cooperative context. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01420-5. [PMID: 35648333 DOI: 10.1007/s12311-022-01420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Recent research has suggested that the posterior cerebellum encodes predictions and sequences of social actions, and also supports detecting inconsistent trait-implying actions of individuals as discussed by Pu et al. (2020, 2021). However, little is known about the role of the posterior cerebellum in detecting sequencing and inconsistencies by a group of individuals during social interaction. Therefore, the present study investigates these cerebellar functions during inconsistent trait-implying actions in a cooperative context. We presented scenarios in which two fictitious protagonists work together to accomplish a common (positive or negative) goal, followed by six sentences describing actions that implied a personality trait of the protagonists. Participants had to memorize the sequence of these actions. Crucially, the implied trait of the actions of the first protagonist contributed to achieving the goal, whereas the implied trait of the second protagonist was either consistent or inconsistent with that goal. As comparison, we added control conditions where participants had to memorize sequences of nonsocial events (implying the same characteristic of two objects), or simply read the social actions without memorizing their order. We found that the posterior cerebellum was activated while memorizing the sequence of social actions compared to simply reading these actions. More importantly, the cerebellar Crus was more strongly activated when detecting inconsistent (as opposed to consistent) actions, especially when inconsistent negative actions impeded a positive goal, relative to consistent negative actions that supported a negative goal. In conclusion, these findings confirm the crucial role of the posterior cerebellum in memorizing social action sequences and extend the cerebellar function in identifying inconsistencies in an individual's actions in a social collaborative context.
Collapse
Affiliation(s)
- Min Pu
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Naem Patemoshela Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|