1
|
Gardette J, Besson G, Baillet M, Rizzolo L, Narbutas J, Van Egroo M, Chylinski D, Maquet P, Salmon E, Vandewalle G, Collette F, Bastin C. Individual differences in anterograde memory for details relate to posterior hippocampal volume. Cortex 2025; 185:64-73. [PMID: 39985936 DOI: 10.1016/j.cortex.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
In recent years, there has been a growing interest in individual differences in autobiographical memory. The ability to recall details from personal past events correlates with the volume of specific hippocampal subfields in healthy adults. Although the posterior hippocampus is believed to process detailed memory representations independently of the memory's age, little is known about individual differences in the ability to recall newly encoded events in detail, and how these differences relate to hippocampal subregions. In this preregistered study, we scored the story recalls from 89 healthy middle-aged participants with a newly designed method that allows to distinguish information recalled in detail from gist recall (i.e., when only the general idea is recalled). After a 20-min delay, detailed information was transformed into gists, which is in line with recent evidence that gists can emerge rapidly after a new experience. In addition, we segmented the anterior and posterior hippocampal subfields CA1, CA2/3, dentate gyrus, and subiculum from high-resolution structural MRI. As predicted, the volume of the posterior hippocampus was positively correlated with the detail score but not with the gist score, yet this effect was significant in the right hemisphere only. We also observed trends towards associations between the detail score and specific subfields of the right posterior hippocampus, but none survived statistical correction for multiple comparisons. Finally, we found no evidence for the expected age-related increase in the use of gists over details. Taken together, these results suggest that the posterior hippocampus supports detail memory in the recall of both remote and newly acquired memories.
Collapse
Affiliation(s)
- Jeremy Gardette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| | - Gabriel Besson
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Marion Baillet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Lou Rizzolo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Justinas Narbutas
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Maxime Van Egroo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Daphne Chylinski
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Pierre Maquet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| |
Collapse
|
2
|
Peters MAK. Introspective psychophysics for the study of subjective experience. Cereb Cortex 2025; 35:49-57. [PMID: 39569467 DOI: 10.1093/cercor/bhae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Studying subjective experience is hard. We believe that pain is not identical to nociception, nor pleasure a computational reward signal, nor fear the activation of "threat circuitry". Unfortunately, introspective self-reports offer our best bet for accessing subjective experience, but many still believe that introspection is "unreliable" and "unverifiable". But which of introspection's faults do we find most damning? Is it that introspection provides imperfect access to brain processes (e.g. perception, memory)? That subjective experience is not objectively verifiable? That it is hard to isolate from non-subjective processing capacity? Here, I argue none of these prevents us from building a meaningful, impactful psychophysical research program that treats subjective experience as a valid empirical target through precisely characterizing relationships among environmental variables, brain processes and behavior, and self-reported phenomenology. Following recent similar calls by Peters (Towards characterizing the canonical computations generating phenomenal experience. 2022. Neurosci Biobehav Rev: 142, 104903), Kammerer and Frankish (What forms could introspective systems take? A research programme. 2023. J Conscious Stud 30:13-48), and Fleming (Metacognitive psychophysics in humans, animals, and AI. 2023. J Conscious Stud 30:113-128), "introspective psychophysics" thus treats introspection's apparent faults as features, not bugs-just as the noise and distortions linking environment to behavior inspired Fechner's psychophysics over 150 years ago. This next generation of psychophysics will establish a powerful tool for building and testing precise explanatory models of phenomenology across many dimensions-urgency, emotion, clarity, vividness, confidence, and more.
Collapse
Affiliation(s)
- Megan A K Peters
- Department of Cognitive Sciences, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Department of Logic and Philosophy of Science, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Center for Theoretical Behavioral Sciences, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Qureshey Research Laboratory, Irvine, CA 92697, United States
- Brain, Mind, and Consciousness Program, Canadian Institute for Advanced Research, MaRS Centre, West Tower661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
3
|
Fenerci C, Davis EE, Henderson SE, Campbell KL, Sheldon S. Shift happens: aging alters the content but not the organization of memory for complex events. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2025; 32:118-141. [PMID: 38814192 DOI: 10.1080/13825585.2024.2360216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
While cognitive aging research has compared episodic memory accuracy between younger and older adults, less work has described differences in how memories are encoded and recalled. This is important for memories of real-world experiences, since there is immense variability in which details can be accessed and organized into narratives. We investigated age effects on the organization and content of memory for complex events. In two independent samples (N = 45; 60), young and older adults encoded and recalled the same short-movie. We applied a novel scoring on the recollections to quantify recall accuracy, temporal organization (temporal contiguity, forward asymmetry), and content (perceptual, conceptual). No age-effects on recall accuracy nor on metrics of temporal organization emerged. Older adults provided more conceptual and non-episodic content, whereas younger adults reported a higher proportion of event-specific information. Our results indicate that age-related differences in episodic recall reflect distinctions in what details are assembled from the past.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Emily E Davis
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Sarah E Henderson
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Karen L Campbell
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Setton R, Wynn JS, Schacter DL. Peering into the future: Eye movements predict neural repetition effects during episodic simulation. Neuropsychologia 2024; 197:108852. [PMID: 38508374 PMCID: PMC11140475 DOI: 10.1016/j.neuropsychologia.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Imagining future scenarios involves recombining different elements of past experiences into a coherent event, a process broadly supported by the brain's default network. Prior work suggests that distinct brain regions may contribute to the inclusion of different simulation features. Here we examine how activity in these brain regions relates to the vividness of future simulations. Thirty-four healthy young adults imagined future events with familiar people and locations in a two-part study involving a repetition suppression paradigm. First, participants imagined events while their eyes were tracked during a behavioral session. Immediately after, participants imagined events during MRI scanning. The events to be imagined were manipulated such that some were identical to those imagined in the behavioral session while others involved new locations, new people, or both. In this way, we could examine how self-report ratings and eye movements predict brain activity during simulation along with specific simulation features. Vividness ratings were negatively correlated with eye movements, in contrast to an often-observed positive relationship with past recollection. Moreover, fewer eye movements predicted greater involvement of the hippocampus during simulation, an effect specific to location features. Our findings suggest that eye movements may facilitate scene construction for future thinking, lending support to frameworks that spatial information forms the foundation of episodic simulation.
Collapse
Affiliation(s)
- Roni Setton
- Harvard University, Department of Psychology, Cambridge, MA, USA.
| | - Jordana S Wynn
- University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
5
|
Kurkela K, Ritchey M. Intrinsic functional connectivity among memory networks does not predict individual differences in narrative recall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555768. [PMID: 38464053 PMCID: PMC10925185 DOI: 10.1101/2023.08.31.555768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network ("DMN-C") that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant's whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
Collapse
Affiliation(s)
- Kyle Kurkela
- Department of Psychology and Neuroscience, Boston College
| | | |
Collapse
|
6
|
Naspi L, Stensholt C, Karlsson AE, Monge ZA, Cabeza R. Effects of Aging on Successful Object Encoding: Enhanced Semantic Representations Compensate for Impaired Visual Representations. J Neurosci 2023; 43:7337-7350. [PMID: 37673674 PMCID: PMC10621770 DOI: 10.1523/jneurosci.2265-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Although episodic memory and visual processing decline substantially with healthy aging, semantic knowledge is generally spared. There is evidence that older adults' spared semantic knowledge can support episodic memory. Here, we used functional magnetic resonance imaging (fMRI) combined with representational similarity analyses (RSAs) to examine how novel visual and preexisting semantic representations at encoding predict subjective memory vividness at retrieval. Eighteen young and seventeen older adults (female and male participants) encoded images of objects during fMRI scanning and recalled these images while rating the vividness of their memories. After scanning, participants discriminated between studied images and similar lures. RSA based on a deep convolutional neural network and normative concept feature data were used to link patterns of neural activity during encoding to visual and semantic representations. Relative to young adults, the specificity of activation patterns for visual features was reduced in older adults, consistent with dedifferentiation. However, the specificity of activation patterns for semantic features was enhanced in older adults, consistent with hyperdifferentiation. Despite dedifferentiation, visual representations in early visual cortex (EVC) predicted high memory vividness in both age groups. In contrast, semantic representations in lingual gyrus (LG) and fusiform gyrus (FG) were associated with high memory vividness only in the older adults. Intriguingly, data suggests that older adults with lower specificity of visual representations in combination with higher specificity of semantic representations tended to rate their memories as more vivid. Our findings suggest that memory vividness in aging relies more on semantic representations over anterior regions, potentially compensating for age-related dedifferentiation of visual information in posterior regions.SIGNIFICANCE STATEMENT Normal aging is associated with impaired memory for events while semantic knowledge might even improve. We investigated the effects of aging on the specificity of visual and semantic information in the brain when viewing common objects and how this information enables subsequent memory vividness for these objects. Using functional magnetic resonance imaging (fMRI) combined with modeling of the stimuli we found that visual information was represented with less specificity in older than young adults while still supporting memory vividness. In contrast semantic information supported memory vividness only in older adults and especially in those individuals that had the lowest specificity of visual information. These findings provide evidence for a spared semantic memory system increasingly recruited to compensate for degraded visual representations in older age.
Collapse
Affiliation(s)
- Loris Naspi
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Charlotte Stensholt
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Anna E Karlsson
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Roberto Cabeza
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| |
Collapse
|