1
|
Nyström M, Hooge ITC, Hessels RS, Andersson R, Hansen DW, Johansson R, Niehorster DC. The fundamentals of eye tracking part 3: How to choose an eye tracker. Behav Res Methods 2025; 57:67. [PMID: 39843609 PMCID: PMC11754381 DOI: 10.3758/s13428-024-02587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/24/2025]
Abstract
There is an abundance of commercial and open-source eye trackers available for researchers interested in gaze and eye movements. Which aspects should be considered when choosing an eye tracker? The paper describes what distinguishes different types of eye trackers, their suitability for different types of research questions, and highlights questions researchers should ask themselves to make an informed choice.
Collapse
Affiliation(s)
- Marcus Nyström
- Lund University Humanities Lab, Box 201, SE, 221 00, Lund, Sweden.
| | - Ignace T C Hooge
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Roy S Hessels
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Diederick C Niehorster
- Lund University Humanities Lab, Box 201, SE, 221 00, Lund, Sweden
- Department of Psychology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Niehorster DC, Nyström M, Hessels RS, Andersson R, Benjamins JS, Hansen DW, Hooge ITC. The fundamentals of eye tracking part 4: Tools for conducting an eye tracking study. Behav Res Methods 2025; 57:46. [PMID: 39762687 PMCID: PMC11703944 DOI: 10.3758/s13428-024-02529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/11/2025]
Abstract
Researchers using eye tracking are heavily dependent on software and hardware tools to perform their studies, from recording eye tracking data and visualizing it, to processing and analyzing it. This article provides an overview of available tools for research using eye trackers and discusses considerations to make when choosing which tools to adopt for one's study.
Collapse
Affiliation(s)
- Diederick C Niehorster
- Lund University Humanities Lab and Department of Psychology, Lund University, Lund, Sweden.
| | - Marcus Nyström
- Lund University Humanities Lab, Lund University, Lund, Sweden
| | - Roy S Hessels
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | | | - Jeroen S Benjamins
- Experimental Psychology, Helmholtz Institute & Social, Health and Organizational Psychology, Utrecht University, Utrecht, the Netherlands
| | - Dan Witzner Hansen
- Eye Information Laboratory, IT University of Copenhagen, Copenhagen, Denmark
| | - Ignace T C Hooge
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Koch NA, Voss P, Cisneros-Franco JM, Drouin-Picaro A, Tounkara F, Ducharme S, Guitton D, de Villers-Sidani É. Eye movement function captured via an electronic tablet informs on cognition and disease severity in Parkinson's disease. Sci Rep 2024; 14:9082. [PMID: 38643273 PMCID: PMC11032372 DOI: 10.1038/s41598-024-59750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Studying the oculomotor system provides a unique window to assess brain health and function in various clinical populations. Although the use of detailed oculomotor parameters in clinical research has been limited due to the scalability of the required equipment, the development of novel tablet-based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. Oculomotor measures captured via a mobile tablet-based technology have previously been shown to reliably discriminate between Parkinson's Disease (PD) patients and healthy controls. Here we further investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various cognitive abilities and disease severity in PD patients. When combined using partial least square regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis we show that eye-tracking parameters can be used in a support vector classifier to discriminate between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical settings by informing on disease stage and cognitive outcomes.
Collapse
Affiliation(s)
- Nils A Koch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Innodem Neurosciences, Montreal, QC, Canada
| | - Patrice Voss
- Montreal Neurological Institute, McGill University, 3801 University Rm 742, Montreal, QC, H3A 2B4, Canada
- Innodem Neurosciences, Montreal, QC, Canada
| | - J Miguel Cisneros-Franco
- Montreal Neurological Institute, McGill University, 3801 University Rm 742, Montreal, QC, H3A 2B4, Canada
| | | | - Fama Tounkara
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon Ducharme
- Montreal Neurological Institute, McGill University, 3801 University Rm 742, Montreal, QC, H3A 2B4, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Daniel Guitton
- Montreal Neurological Institute, McGill University, 3801 University Rm 742, Montreal, QC, H3A 2B4, Canada
| | - Étienne de Villers-Sidani
- Montreal Neurological Institute, McGill University, 3801 University Rm 742, Montreal, QC, H3A 2B4, Canada.
- Innodem Neurosciences, Montreal, QC, Canada.
| |
Collapse
|
4
|
Nejad A, de Haan GA, Heutink J, Cornelissen FW. ACE-DNV: Automatic classification of gaze events in dynamic natural viewing. Behav Res Methods 2024; 56:3300-3314. [PMID: 38448726 PMCID: PMC11133063 DOI: 10.3758/s13428-024-02358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Eye movements offer valuable insights for clinical interventions, diagnostics, and understanding visual perception. The process usually involves recording a participant's eye movements and analyzing them in terms of various gaze events. Manual identification of these events is extremely time-consuming. Although the field has seen the development of automatic event detection and classification methods, these methods have primarily focused on distinguishing events when participants remain stationary. With increasing interest in studying gaze behavior in freely moving participants, such as during daily activities like walking, new methods are required to automatically classify events in data collected under unrestricted conditions. Existing methods often rely on additional information from depth cameras or inertial measurement units (IMUs), which are not typically integrated into mobile eye trackers. To address this challenge, we present a framework for classifying gaze events based solely on eye-movement signals and scene video footage. Our approach, the Automatic Classification of gaze Events in Dynamic and Natural Viewing (ACE-DNV), analyzes eye movements in terms of velocity and direction and leverages visual odometry to capture head and body motion. Additionally, ACE-DNV assesses changes in image content surrounding the point of gaze. We evaluate the performance of ACE-DNV using a publicly available dataset and showcased its ability to discriminate between gaze fixation, gaze pursuit, gaze following, and gaze shifting (saccade) events. ACE-DNV exhibited comparable performance to previous methods, while eliminating the necessity for additional devices such as IMUs and depth cameras. In summary, ACE-DNV simplifies the automatic classification of gaze events in natural and dynamic environments. The source code is accessible at https://github.com/arnejad/ACE-DNV .
Collapse
Affiliation(s)
- Ashkan Nejad
- Department of Research and Improvement of Care, Royal Dutch Visio, Huizen, The Netherlands.
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Gera A de Haan
- Department of Research and Improvement of Care, Royal Dutch Visio, Huizen, The Netherlands
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands
| | - Joost Heutink
- Department of Research and Improvement of Care, Royal Dutch Visio, Huizen, The Netherlands
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands
| | - Frans W Cornelissen
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Prahalad KS, Coates DR. Alterations to foveal crowding with microsaccade preparation. Vision Res 2024; 214:108338. [PMID: 37988923 DOI: 10.1016/j.visres.2023.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Visual stimuli presented around the time of a saccade have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.
Collapse
Affiliation(s)
- Krishnamachari S Prahalad
- College of Optometry, University of Houston, USA; Brain and Cognitive Sciences, University of Rochester, USA.
| | | |
Collapse
|
6
|
de Villers-Sidani É, Voss P, Bastien N, Cisneros-Franco JM, Hussein S, Mayo NE, Koch NA, Drouin-Picaro A, Blanchette F, Guitton D, Giacomini PS. Oculomotor analysis to assess brain health: preliminary findings from a longitudinal study of multiple sclerosis using novel tablet-based eye-tracking software. Front Neurol 2023; 14:1243594. [PMID: 37745656 PMCID: PMC10516298 DOI: 10.3389/fneur.2023.1243594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
A growing body of evidence supports the link between eye movement anomalies and brain health. Indeed, the oculomotor system is composed of a diverse network of cortical and subcortical structures and circuits that are susceptible to a variety of degenerative processes. Here we show preliminary findings from the baseline measurements of an ongoing longitudinal cohort study in MS participants, designed to determine if disease and cognitive status can be estimated and tracked with high accuracy based on eye movement parameters alone. Using a novel gaze-tracking technology that can reliably and accurately track eye movements with good precision without the need for infrared cameras, using only an iPad Pro embedded camera, we show in this cross-sectional study that several eye movement parameters significantly correlated with clinical outcome measures of interest. Eye movement parameters were extracted from fixation, pro-saccade, anti-saccade, and smooth pursuit visual tasks, whereas the clinical outcome measures were the scores of several disease assessment tools and standard cognitive tests such as the Expanded Disability Status Scale (EDSS), Brief International Cognitive Assessment for MS (BICAMS), the Multiple Sclerosis Functional Composite (MSFC) and the Symbol Digit Modalities Test (SDMT). Furthermore, partial least squares regression analyses show that a small set of oculomotor parameters can explain up to 84% of the variance of the clinical outcome measures. Taken together, these findings not only replicate previously known associations between eye movement parameters and clinical scores, this time using a novel mobile-based technology, but also the notion that interrogating the oculomotor system with a novel eye-tracking technology can inform us of disease severity, as well as the cognitive status of MS participants.
Collapse
Affiliation(s)
- Étienne de Villers-Sidani
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - J. Miguel Cisneros-Franco
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Nancy E. Mayo
- Faculty of Medicine, School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Nils A. Koch
- Innodem Neurosciences, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | | | - Daniel Guitton
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Paul S. Giacomini
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Allen AK, Jacobs MT, Davidenko N. Subjective control of polystable illusory apparent motion: Is control possible when the stimulus affords countless motion possibilities? J Vis 2022; 22:5. [PMID: 35708685 PMCID: PMC9206494 DOI: 10.1167/jov.22.7.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigate whether a new polystable illusion, illusory apparent motion (IAM), is susceptible to subjective perceptual control as has been shown in other polystable stimuli (e.g., the Necker cube, apparent motion quartets). Previous research has demonstrated that, although IAM shares some properties in common with other polystable stimuli, it also has some unique ones that make it unclear whether it should have similar susceptibility to subjective control. For example, IAM can be perceived in a countless number of directions and motion patterns (e.g., up–down, left–left, contracting–expanding, shear, diagonal). To explore perceptual control of IAM, in experiment 1 (n = 99) we used a motion persistence paradigm where participants are primed with different motion patterns and are instructed to control (change or hold) the initial motion pattern and indicate when the motion pattern changes. Building on experiment 1, experiment 2 (n = 76) brings the method more in line with previous subjective control research, testing whether participants can control their perception of IAM in a context without priming and while dynamically reporting their percepts throughout the trial. Findings from the two experiments demonstrate that participants were able to control their perception of IAM across paradigms. We explore the implications of these findings, strategies reported, and open questions for future research.
Collapse
Affiliation(s)
- Allison K Allen
- Department of Psychology, University of California Santa Cruz, Santa Cruz, CA, USA.,
| | - Matthew T Jacobs
- Open Mind School, Silicon Valley Social Innovation Lab, Menlo Park, CA, USA.,
| | - Nicolas Davidenko
- Department of Psychology, University of California Santa Cruz, Santa Cruz, CA, USA.,
| |
Collapse
|
8
|
Schweitzer R, Rolfs M. Intrasaccadic motion streaks jump-start gaze correction. SCIENCE ADVANCES 2021; 7:eabf2218. [PMID: 34301596 PMCID: PMC8302125 DOI: 10.1126/sciadv.abf2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/22/2021] [Indexed: 05/09/2023]
Abstract
Rapid eye movements (saccades) incessantly shift objects across the retina. To establish object correspondence, the visual system is thought to match surface features of objects across saccades. Here, we show that an object's intrasaccadic retinal trace-a signal previously considered unavailable to visual processing-facilitates this match making. Human observers made saccades to a cued target in a circular stimulus array. Using high-speed visual projection, we swiftly rotated this array during the eyes' flight, displaying continuous intrasaccadic target motion. Observers' saccades landed between the target and a distractor, prompting secondary saccades. Independently of the availability of object features, which we controlled tightly, target motion increased the rate and reduced the latency of gaze-correcting saccades to the initial presaccadic target, in particular when the target's stimulus features incidentally gave rise to efficient motion streaks. These results suggest that intrasaccadic visual information informs the establishment of object correspondence and jump-starts gaze correction.
Collapse
Affiliation(s)
- Richard Schweitzer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
9
|
Schweitzer R, Rolfs M. Intra-saccadic motion streaks as cues to linking object locations across saccades. J Vis 2021; 20:17. [PMID: 32334429 PMCID: PMC7405763 DOI: 10.1167/jov.20.4.17] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
When visual objects shift rapidly across the retina, they produce motion blur. Intra-saccadic visual signals, caused incessantly by our own saccades, are thought to be eliminated at early stages of visual processing. Here we investigate whether they are still available to the visual system and could—in principle—be used as cues for localizing objects as they change locations on the retina. Using a high-speed projection system, we developed a trans-saccadic identification task in which brief but continuous intra-saccadic object motion was key to successful performance. Observers made a saccade to a target stimulus that moved rapidly either up or down, strictly during the eye movement. Just as the target reached its final position, an identical distractor stimulus appeared on the opposite side, resulting in a display of two identical stimuli upon saccade landing. Observers had to identify the original target using the only available clue: the target's intra-saccadic movement. In an additional replay condition, we presented the observers’ own intra-saccadic retinal stimulus trajectories during fixation. Compared to the replay condition, task performance was impaired during saccades but recovered fully when a post-saccadic blank was introduced. Reverse regression analyses and confirmatory experiments showed that performance increased markedly when targets had long movement durations, low spatial frequencies, and orientations parallel to their retinal trajectory—features that promote intra-saccadic motion streaks. Although the potential functional role of intra-saccadic visual signals is still unclear, our results suggest that they could provide cues to tracking objects that rapidly change locations across saccades.
Collapse
|
10
|
Hauperich AK, Young LK, Smithson HE. What makes a microsaccade? A review of 70 years of research prompts a new detection method. J Eye Mov Res 2020; 12. [PMID: 33828754 PMCID: PMC7962681 DOI: 10.16910/jemr.12.6.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A new method for detecting microsaccades in eye-movement data is presented, following a review of reported microsaccade properties between the 1940s and today. The review focuses on the parameter ranges within which certain physical markers of microsaccades are thought to occur, as well as any features of microsaccades that have been stably reported over time. One feature of microsaccades, their binocularity, drives the new microsaccade detection method. The binocular correlation method for microsaccade detection is validated on two datasets of binocular eye-movements recorded using video-based systems: one collected as part of this study, and one from Nyström et al, 2017. Comparisons between detection methods are made using precision-recall statistics. This confirms that the binocular correlation method performs well when compared to manual coders and performs favourably compared to the commonly used Engbert & Kliegl (2003) method with subsequent modifications (Engbert & Mergenthaler, 2006). The binocular correlation microsaccade detection method is easy to implement and MATLAB code is made available to download.
Collapse
|