1
|
Mahendravada S, Lahiri BB, Khan F, Sathyanarayana AT, Vizhi RE, Moorthy A, Philip J. A nudge over the relaxation plateau: effect of pH, particle concentration, and medium viscosity on the AC induction heating efficiency of biocompatible chitosan-coated Fe 3O 4nanoparticles. NANOTECHNOLOGY 2024; 35:165704. [PMID: 38211331 DOI: 10.1088/1361-6528/ad1d79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The effects of pH, MNP concentration, and medium viscosity on the magnetic fluid hyperthermia (MFH) properties of chitosan-coated superparamagnetic Fe3O4nanoparticles (MNPs) are probed here. Due to the protonation of the amide groups, the MNPs are colloidally stable at lower pH (∼2), but form aggregates at higher pH (∼8). The increased aggregate size at higher pH causes the Brownian relaxation time (τB) to increase, leading to a decrease in specific absorption rate (SAR). For colloidal conditions ensuring Brownian-dominated relaxation dynamics, an increase in MNP concentrations or medium viscosity is found to increase theτB. SAR decreases with increasing MNP concentration, whereas it exhibits a non-monotonic variation with increasing medium viscosity. Dynamic hysteresis loop-based calculations are found to be in agreement with the experimental results. The findings provide a greater understanding of the variation of SAR with the colloidal properties and show the importance of relaxation dynamics on MFH efficiency, where variations in the frequency-relaxation time product across the relaxation plateau cause significant variations in SAR. Further, thein vitrocytotoxicity studies show good bio-compatibility of the chitosan-coated Fe3O4MNPs. Higher SAR at acidic pH for bio-medically acceptable field parameters makes the bio-compatible chitosan-coated Fe3O4MNPs suitable for MFH applications.
Collapse
Affiliation(s)
- Srujana Mahendravada
- Smart Materials Section, Materials Characterization Group (MCG), Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, PIN 603102, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, PIN 400094, India
| | - B B Lahiri
- Smart Materials Section, Materials Characterization Group (MCG), Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, PIN 603102, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, PIN 400094, India
| | - Fouzia Khan
- Smart Materials Section, Materials Characterization Group (MCG), Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, PIN 603102, India
| | - A T Sathyanarayana
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, PIN 400094, India
- Low Temperature Studies Section, Condensed Matter Physics Division, Materials Science Group, IGCAR, Tamil Nadu, PIN 603102, India
| | - R Ezhil Vizhi
- Materials Research Laboratory, Centre for Functional Materials, Vellore Institute of Technology, Vellore, Tamil Nadu, PIN 632014, India
| | - Anbalagan Moorthy
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, PIN 632014, India
| | - John Philip
- Smart Materials Section, Materials Characterization Group (MCG), Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, PIN 603102, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, PIN 400094, India
| |
Collapse
|
2
|
Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. NANOMATERIALS 2021; 11:nano11030618. [PMID: 33801426 PMCID: PMC7999083 DOI: 10.3390/nano11030618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
This paper describes a magnetic nanotechnology that locally enables hyperthermia treatment of hollow organ tumors by using polymer hybrid stents with incorporated magnetic nanoparticles (MNP). The hybrid stents are implanted and activated in an alternating magnetic field to generate therapeutically effective heat, thereby destroying the tumor. Here, we demonstrate the feasibility of nanomagnetic actuation of three prototype hybrid stents for hyperthermia treatment of hollow organ tumors. The results show that the heating efficiency of stent filaments increases with frequency from approximately 60 W/gFe (95 kHz) to approximately 250 W/gFe (270 kHz). The same trend is observed for the variation of magnetic field amplitude; however, heating efficiency saturates at approximately 30 kA/m. MNP immobilization strongly influences heating efficiency showing a relative difference in heating output of up to 60% compared to that of freely dispersed MNP. The stents showed uniformly distributed heat on their surface reaching therapeutically effective temperatures of 43 °C and were tested in an explanted pig bile duct for their biological safety. Nanomagnetic actuation of hybrid stents opens new possibilities in cancer treatment of hollow organ tumors.
Collapse
|