1
|
Dong W, Li M, Chen C, Xie K, Hong J, Yang L. Flexible hybrid self-powered piezo-triboelectric nanogenerator based on BTO-PVDF/PDMS nanocomposites for human machine interaction. Sci Rep 2025; 15:15991. [PMID: 40341141 PMCID: PMC12062230 DOI: 10.1038/s41598-025-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
As flexible and wearable electronics play more and more important role in smart watches, smart glass and virtual reality, and the power supply to the wearable electronics have been revealed more attentions for long-term usage and continuous healthy monitoring. To overcome the challenge, flexible self-powered BTO-PVDF/PDMS piezoelectric-triboelectric electric hybrid generators (BPP-HNG) are developed to human gesture monitoring and human machine interaction (HMI) application without external power supply. BPP-HNG based on BTO-PVDF and PDMS films are prepared by sol-gel and spin-coating method. When the BTO content is 20 wt.%, BPP-HNG exhibits better electrical performance with an output voltage of 20.51 V. A real-time gesture monitoring system is designed and developed to human machine interaction, which is able to control the motion of robot finger through BPP-HNG. BPP-HNG could monitor and recognize various gestures in real time, enabling synchronization between the human hand and the robot's hand. With the convergence of AI technology and big data, BPP-HNG based HMI technology is expected to realize the potential of smarter and more intuitive interactions.
Collapse
Affiliation(s)
- Wentao Dong
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Mengyun Li
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Chang Chen
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Kun Xie
- Department of Civil and Environmental Engineering, Transportation Informatics Lab, Old Dominion University (ODU), 4635 Hampton Boulevard, Norfolk, VA, 23529, USA
| | - Jinhua Hong
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China.
| | - Lin Yang
- Department of Mechanical and Electrical Engineering, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Leburu E, Qiao Y, Wang Y, Yang J, Liang S, Yu W, Yuan S, Duan H, Huang L, Hu J, Hou H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomed Microdevices 2024; 26:30. [PMID: 38913209 DOI: 10.1007/s10544-024-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/25/2024]
Abstract
Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.
Collapse
Affiliation(s)
- Ely Leburu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuting Qiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanshen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Liang Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
3
|
Che Z, O'Donovan S, Xiao X, Wan X, Chen G, Zhao X, Zhou Y, Yin J, Chen J. Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207600. [PMID: 36759957 DOI: 10.1002/smll.202207600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Triboelectric nanogenerators (TENGs) have gained significant traction in recent years in the bioengineering community. With the potential for expansive applications for biomedical use, many individuals and research groups have furthered their studies on the topic, in order to gain an understanding of how TENGs can contribute to healthcare. More specifically, there have been a number of recent studies focusing on implantable triboelectric nanogenerators (I-TENGs) toward self-powered cardiac systems healthcare. In this review, the progression of implantable TENGs for self-powered cardiovascular healthcare, including self-powered cardiac monitoring devices, self-powered therapeutic devices, and power sources for cardiac pacemakers, will be systematically reviewed. Long-term expectations of these implantable TENG devices through their biocompatibility and other utilization strategies will also be discussed.
Collapse
Affiliation(s)
- Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sarah O'Donovan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Tladi BC, Kroon RE, Swart HC, Motaung DE. A holistic review on the recent trends, advances, and challenges for high-precision room temperature liquefied petroleum gas sensors. Anal Chim Acta 2023; 1253:341033. [PMID: 36965988 DOI: 10.1016/j.aca.2023.341033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Liquefied petroleum gas (LPG), which is mainly composed of hydrocarbons, such as propane and butane, is a flammable gas that is considered a clean source of energy. Currently, the overwhelming use of LPG as fuel in vehicles, domestic settings, and industry has led to several incidents and deaths globally due to leakage. As a result, the appropriate detection of LPG is vital; thus, gas-sensing devices that can monitor this gas rapidly and accurately at room temperature, are required. This work reviews the current advances in LPG gas sensors, which operate at room temperature. The influences of the synthesis methods and parameters, doping, and use of catalysts on the sensing performance are discussed. The formation of heterostructures made from semiconducting metal oxides, polymers, and graphene-based materials, which enhance the sensor selectivity and sensitivity, is also discussed. The future trends and challenges confronted in the advancement of LPG room temperature operational gas sensors, and critical ideas concerning the future evolution of LPG gas sensors, are deliberated. Additionally, the advancements in the next-generation gas sensors, such as the wireless detection of LPG leakage, self-powered sensors driven by triboelectric/piezoelectric mechanisms, and artificial intelligent systems are also reviewed. This review further focuses on the use of smartphones to circumvent the use of costly instruments and paves the way for cost-efficient and portable monitoring of LPG. Finally, the approach of utilizing the Internet of Things (IoT) to detect/monitor the leakage of LPG has also been discussed, which will provide better alerts to the users and thus minimize the effects of leakages.
Collapse
Affiliation(s)
- B C Tladi
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein, ZA9300, South Africa
| | - R E Kroon
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein, ZA9300, South Africa.
| | - H C Swart
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein, ZA9300, South Africa.
| | - D E Motaung
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein, ZA9300, South Africa.
| |
Collapse
|
5
|
Fan JC, Tang XG, Sun QJ, Jiang YP, Li WH, Liu QX. Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor. NANOSCALE 2023; 15:6263-6272. [PMID: 36908277 DOI: 10.1039/d2nr05962b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the last two decades, nanogenerators have been studied inorder to solve the power supply problems of electronic devices. Triboelectric nanogenerators (TENGs) have gained widespread attention due to their excellent properties and wide range of applications. However, previous studies frequently ignored numerous application-related issues and even wasted some of the benefits of the TENG itself in favor of enhanced performance. Here, we propose a TENG based on BaTiO3 (BTO)-polydimethylsiloxane (PDMS) composite films with low cost and simple preparation, where its maximum output performance is obtained when the mass proportion of BTO to PDMS is 40%. In addition, we demonstrate how the single-electrode TENG may be used as a self-powered touch sensor that can communicate with a microcontroller unit (MCU) to turn LED lights on and off. This practical example will provide a valuable reference for the application of low-cost self-powered sensors in wearable devices, Internet of Things, human-machine interactions and other fields. Furthermore, we discovered a number of issues that were rarely or never addressed in previous studies and provide some solutions, such as a signal processing method for a TENG-based self-powered sensor. It serves as a foundation for future investigations on the performance assessment and application of TENGs.
Collapse
Affiliation(s)
- Jie-Cheng Fan
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Xin-Gui Tang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Yan-Ping Jiang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Wen-Hua Li
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Qiu-Xiang Liu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Loddenkemper T. Detect, predict, and prevent acute seizures and status epilepticus. Epilepsy Behav 2023; 141:109141. [PMID: 36871317 DOI: 10.1016/j.yebeh.2023.109141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
Status epilepticus is one of the most frequent pediatric neurological emergencies. While etiology is often influencing the outcome, more easily modifiable risk factors of outcome include detection of prolonged convulsive seizures and status epilepticus and appropriately dosed and timely applied medication treatment. Unpredictability and delayed or incomplete treatment may at times lead to longer seizures, thereby affecting outcomes. Barriers in the care of acute seizures and status epilepticus include the identification of patients at greatest risk of convulsive status epilepticus, potential stigma, distrust, and uncertainties in acute seizure care, including caregivers, physicians, and patients. Furthermore, unpredictability, detection capability, and identification of acute seizures and status epilepticus, limitations in access to obtaining and maintaining appropriate treatment, and rescue treatment options pose challenges. Additionally, timing and dosing of treatment and related acute management algorithms, potential variations in care due to healthcare and physician culture and preference, and factors related to access, equity, diversity, and inclusion of care. We outline strategies for the identification of patients at risk of acute seizures and status epilepticus, improved status epilepticus detection and prediction, and acute closed-loop treatment and status epilepticus prevention. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|