1
|
Balakrishnan A, Jacob MM, Senthil Kumar P, Kapoor A, Ponnuchamy M, Sivaraman P, Sillanpää M. Strategies for safe management of hospital wastewater during the COVID-19 pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-16. [PMID: 36817164 PMCID: PMC9925218 DOI: 10.1007/s13762-023-04803-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Management of hospital wastewater is a challenging task, particularly during the situations like coronavirus 2019 (COVID-19) pandemic. The hospital effluent streams are likely to contain many known and unknown contaminants including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along with a variety of pollutants arising from pharmaceuticals, life-style chemicals, drugs, radioactive species, and human excreta from the patients. The effluents are a mixed bag of contaminants with some of them capable of infecting through contact. Hence, it is essential to identify appropriate treatment strategies for hospital waste streams. In this work, various pollutants emerging in the context of COVID-19 are examined. A methodical review is conducted on the occurrence and disinfection methods of SARS-CoV-2 in wastewater. An emphasis is given to the necessity of addressing the challenges of handling hospital effluents dynamically involved during the pandemic scenario to ensure human and environmental safety. A comparative evaluation of disinfection strategies makes it evident that the non-contact methods like ultraviolet irradiation, hydrogen peroxide vapor, and preventive approaches such as the usage of antimicrobial surface coating offer promise in reducing the chance of disease transmission. These methods are also highly efficient in comparison with other strategies. Chemical disinfection strategies such as chlorination may lead to further disinfection byproducts, complicating the treatment processes. An overall analysis of various disinfection methods is presented here, including developing methods such as membrane technologies, highlighting the merits and demerits of each of these processes. Finally, the wastewater surveillance adopted during the COVID-19 outbreak is discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04803-1.
Collapse
Affiliation(s)
- A. Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - M. M. Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - P. Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603203 India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603203 India
- School of Engineering, Lebanese American University, Byblos, Lebanon
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India
| | - A. Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh 208002 India
| | - M. Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - P. Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - M. Sillanpää
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan 611731 People’s Republic of China
| |
Collapse
|
2
|
Ghosal K. Tackling COVID-19 Using Antiviral Nanocoating's-Recent Progress and Future Challenges. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2023; 40:2200154. [PMID: 36711425 PMCID: PMC9874835 DOI: 10.1002/ppsc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Indexed: 05/05/2023]
Abstract
In the current situation of the global coronavirus disease 2019 (COVID-19) pandemic, there is a worldwide demand for the protection of regular handling surfaces from viral transmission to restrict the spread of COVID-19 infection. To tackle this challenge, researchers and scientists are continuously working on novel antiviral nanocoatings to make various substrates capable of arresting the spread of such pathogens. These nanocoatings systems include metal/metal oxide nanoparticles, electrospun antiviral polymer nanofibers, antiviral polymer nanoparticles, graphene family nanomaterials, and etched nanostructures. The antiviral mechanism of these systems involves depletion of the spike glycoprotein that anchors to surfaces by the nanocoating and makes the spike glycoprotein and viral nucleotides inactive; however, the nature of the interaction between the spike proteins and virus depends on the type of nanostructure and a surface charge over the coating surface. In this article, the current scenario of COVID-19 and how it can be tackled using antiviral nanocoatings from the further transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with their different mode of action, are discussed. Additionally, it is also highlighted different types of nanocoatings developed for various substrates to encounter transmission of SARS-CoV-2, future research areas along with the current challenges related to it, and how these challenges can be resolved.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research & Development LaboratoryShalimar Paints LimitedNashikMaharashtra422403India
- The Wolfson Faculty of Chemical EngineeringTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
3
|
Tiwari AK, Gupta MK, Pandey G, Pandey S, Pandey PC. Amine-Functionalized Silver Nanoparticles: A Potential Antiviral-Coating Material with Trap and Kill Efficiency to Combat Viral Dissemination (COVID-19). BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022:1-15. [PMID: 37363135 PMCID: PMC9581455 DOI: 10.1007/s44174-022-00044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of COVID-19 has drastically affected the daily lifestyles of people globally where specific Coronavirus-2 transmits primarily by respiratory droplets. Structurally, the SARS-CoV-2 virus is made up of four types of proteins in which S-protein is indispensable among them, as it causes rapid replication in the host body. Therefore, the glycine and alanine composed of HR1 of S-protein is the ideal target for antiviral action. Different forms of surface-active PPEs can efficiently prevent this transmission in this circumstance. However, the virus can survive on the conventional PPEs for a long time. Hence, the nanotechnological approaches based on engineered nanomaterials coating on medical equipments can potentially prevent the dissemination of infections in public. Silver nanoparticles with tuneable physicochemical properties and versatile chemical functionalization provide an excellent platform to combat the disease. The coating of amine-functionalized silver nanoparticle (especially amine linked to aliphatic chain and trialkoxysilane) in its nanostructured form enables cloths trap and kill efficient. PPEs are a primary and reliable preventive measure, although they are not 100% effective against viral infections. So, developing and commercializing surface-active PPEs with trap and kill efficacy is highly needed to cope with current and future viral infections. This review article discusses the COVID-19 morphology, antiviral mechanism of Ag-NPs against SARS-CoV-2 virus, surface factors that influence viral persistence on fomites, the necessity of antiviral PPEs, and the potential application of amine-functionalized silver nanoparticles as a coating material for the development of trap and kill-efficient face masks and PPE kits.
Collapse
Affiliation(s)
- Atul Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Munesh Kumar Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Govind Pandey
- Department of Paediatrics, King George Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Shivangi Pandey
- Motilal Nehru Medical Collage, Allahabad, Uttar Pradesh 211001 India
| | - Prem C. Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
4
|
Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci 2022; 306:102726. [PMID: 35785596 DOI: 10.1016/j.cis.2022.102726] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pragathi Kamarasu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread. MICRO AND NANO ENGINEERING 2022. [PMCID: PMC8685168 DOI: 10.1016/j.mne.2021.100100] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
Collapse
|
6
|
Repkova M, Levina A, Ismagilov Z, Mazurkova N, Mazurkov O, Zarytova V. Effective Inhibition of Newly Emerged A/H7N9 Virus with Oligonucleotides Targeted to Conserved Regions of the Virus Genome. Nucleic Acid Ther 2021; 31:436-442. [PMID: 34665651 DOI: 10.1089/nat.2021.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Newly emerged highly pathogenic A/H7N9 viruses with pandemic potential are effectively transmitted from birds to humans and require the development of novel antiviral drugs. For the first time, we studied the in vitro and in vivo antiviral activity against A/H7N9 of oligodeoxyribonucleotides (ODNs), which were delivered into the cells in the proposed TiO2-based nanocomposites (TiO2∼ODN). The highest inhibition of A/H7N9 in vitro (∼400-fold) and efficient, sequence-specific, and dose-dependent protection (up to 100%) of A/H7N9-infected mice was revealed when ODN was targeted to the conserved terminal 3'-noncoding region of viral (-)RNA. After the treatment with ODN, the virus titer values in the lungs of mice decreased by several orders of magnitude. The TiO2∼ODN nanocomposite did not show toxicity in mice under the treatment conditions. The proposed approach for effective inhibition of the A/H7N9 can be tested against other viruses, for example, new emerging influenza viruses and coronaviruses with pandemic potential.
Collapse
Affiliation(s)
- Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Zinfer Ismagilov
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector", Novosibirsk, Russia
| | - Oleg Mazurkov
- FBRI State Research Center of Virology and Biotechnology "Vector", Novosibirsk, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Zare M, Thomas V, Ramakrishna S. Nanoscience and quantum science-led biocidal and antiviral strategies. J Mater Chem B 2021; 9:7328-7346. [PMID: 34378553 DOI: 10.1039/d0tb02639e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) caused the COVID-19 pandemic. According to the World Health Organization, this pandemic continues to be a serious threat to public health due to the worldwide spread of variants and their higher rate of transmissibility. A range of measures are necessary to slow the pandemic and save lives, which include constant evaluation and the careful adjustment of public-health responses augmented by medical treatments, vaccines and protective gear. It is hypothesized that nanostructured particulates underpinned by nanoscience and quantum science yield high-performing antiviral strategies, which can be applied in preventive, diagnostic, and therapeutic applications such as face masks, respirators, COVID test kits, vaccines, and drugs. This review is aimed at providing comprehensive and cohesive perspectives on various nanostructures that are suited to intensifying and amplifying the effectiveness of antiviral strategies. Growing scientific literature over the past eighteen months indicates that quantum dots, iron oxide, silicon oxide, polymeric and metallic nanoparticles have been employed in COVID-19 diagnostic assays, vaccines, and personal protective equipment (PPE). Quantum dots have displayed their suitability as more sensitive imaging probes in diagnostics and prognostics, and as controlled drug-release carriers that target the virus. Nanoscience and quantum science have assisted the design of advanced vaccine delivery since nanostructured materials are suited for antigen delivery, as mimics of viral structures and as adjuvants. Furthermore, the quantum science- and nanoscience-supported tailored functionalization of nanostructured materials offers insight and pathways to deal with future pandemics. This review seeks to illustrate several examples, and to explain the underpinning quantum science and nanoscience phenomena, which include wave functions, electrostatic interactions, van der Waals forces, thermal and electrodynamic fluctuations, dispersion forces, local field-enhancement effects, and the generation of reactive oxygen species (ROS). This review discusses how nanostructured materials are helpful in the detection, prevention, and treatment of the SARS-CoV-2 infection, other known viral infection diseases, and future pandemics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
8
|
Huang X, Xu W, Li M, Zhang P, Zhang YS, Ding J, Chen X. Antiviral biomaterials. MATTER 2021; 4:1892-1918. [DOI: 10.1016/j.matt.2021.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
9
|
Shukla BK, Tyagi H, Bhandari H, Garg S. Nanotechnology-Based Approach to Combat Pandemic COVID 19: A Review. MACROMOLECULAR SYMPOSIA 2021; 397:2000336. [PMID: 34511843 PMCID: PMC8420461 DOI: 10.1002/masy.202000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of a novel Corona virus (COVID 19) originated on December 19 from China. The city of Wuhan, the capital city of Hubei province, China, is responsible for an outbreak of respiratory illness known as COVID 19 and it has been rapidly spread across the world claiming millions of lives. The sudden outbreak of novel Coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a big concern for their speedy mitigation using the predictable treatment and creating its approach around the world. Researchers and doctors are in search of rapid diagnosis kit, drugs, and viral-resistant personal protective equipment (PPE) to clinical diagnosis, medication, and prevent the spread of COVID 19. A rational approach with adaptability and broad viewpoint to challenge the growing pain could be overcome by the application of appropriate technology. The nanotechnology-based approach can significantly serve the purpose of the current pandemic situation of COVID 19. But same time implementation of innovative and creative nanotech approach, there is a decisive need for the full knowledge of SARS-CoV-2 pathogenesis. Moreover, to defeat COVID 19, particularly nanotech-based system with their viral inhibitory properties to increase the effective nanotech approach is essential. In this scenario, this review aims to summarize the past, present, and future of nanotech-based systems that can be used to treat COVID 19, highlighting Nano-based compounds. Lastly, the potential application of the different category of Inorganic Nanomaterials/Inorganic organic conjugate /hybrid system and their practical applicability as suitable means for inspiring against COVID 19 has also been discussed.
Collapse
Affiliation(s)
- Brijesh Kumar Shukla
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| | - Himanshi Tyagi
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| | - Hema Bhandari
- Department of ChemistryMaitreyi CollegeUniversity of DelhiDelhi110021India
| | - Seema Garg
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| |
Collapse
|
10
|
Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Esmaeili Y, Najaflu M, Khanahmad N, Zeinalian M, Trovato M, Tay FR, Khanahmad H, Makvandi P. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Int J Mol Sci 2021; 22:5438. [PMID: 34064039 PMCID: PMC8196740 DOI: 10.3390/ijms22115438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.
Collapse
Affiliation(s)
- Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 8164776351, Iran;
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Negar Khanahmad
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 817467346, Iran;
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy;
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA;
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| |
Collapse
|
11
|
Levina A, Repkova M, Shikina N, Ismagilov Z, Kupryushkin M, Pavlova A, Mazurkova N, Pyshnyi D, Zarytova V. Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. Eur J Pharm Biopharm 2021; 162:92-98. [PMID: 33753212 DOI: 10.1016/j.ejpb.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/20/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
This study describes the effective attack of oligonucleotides on the viral genome of highly pathogenic H5N1 influenza A virus (IAV) in vivo using for the first time the new delivery system consisting of biocompatible low-toxic titanium dioxide nanoparticles and immobilized polylysine-containing oligonucleotides with the native (ODN) and partially modified (ODNm) internucleotide bonds. Intraperitoneal injection of the TiO2•PL-ODN nanocomposite provided 65-70% survival of mice, while intraperitoneal or oral administration of TiO2•PL-ODNm was somewhat more efficient (~80% survival). The virus titer in the lung was reduced by two-three orders of magnitude. The nanocomposites are nontoxic to mice under the used conditions. TiO2 nanoparticles, unbound ODN, and the nanocomposite bearing the random oligonucleotide showed an insignificant protective effect, which indicates the ability of targeted oligonucleotides delivered in mice in the nanocomposites to site-specifically interact with complementary RNAs. The protection of oligonucleotides in nanocomposites by TiO2 nanoparticles and partial modification of the internucleotide bonds provides a continued presence of oligonucleotides in the body for the effective and specific action on the viral RNA. The proposed oligonucleotide delivery system can claim not only to effectively inhibit IAV genes but also to turn off other genes responsible for diseases caused by nucleic acids.
Collapse
Affiliation(s)
- Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Nadezhda Shikina
- Boreskov Institute of Catalysis, Siberian Branch of RAS, pr. Lavrent'eva 5, 630090 Novosibirsk, Russia
| | - Zinfer Ismagilov
- Boreskov Institute of Catalysis, Siberian Branch of RAS, pr. Lavrent'eva 5, 630090 Novosibirsk, Russia
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Anna Pavlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Natalia Mazurkova
- FBRI State Research Centre of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Dmitrii Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
12
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Wieczorek K, Szutkowska B, Kierzek E. Anti-Influenza Strategies Based on Nanoparticle Applications. Pathogens 2020; 9:E1020. [PMID: 33287259 PMCID: PMC7761763 DOI: 10.3390/pathogens9121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza virus has the potential for being one of the deadliest viruses, as we know from the pandemic's history. The influenza virus, with a constantly mutating genome, is becoming resistant to existing antiviral drugs and vaccines. For that reason, there is an urgent need for developing new therapeutics and therapies. Despite the fact that a new generation of universal vaccines or anti-influenza drugs are being developed, the perfect remedy has still not been found. In this review, various strategies for using nanoparticles (NPs) to defeat influenza virus infections are presented. Several categories of NP applications are highlighted: NPs as immuno-inducing vaccines, NPs used in gene silencing approaches, bare NPs influencing influenza virus life cycle and the use of NPs for drug delivery. This rapidly growing field of anti-influenza methods based on nanotechnology is very promising. Although profound research must be conducted to fully understand and control the potential side effects of the new generation of antivirals, the presented and discussed studies show that nanotechnology methods can effectively induce the immune responses or inhibit influenza virus activity both in vitro and in vivo. Moreover, with its variety of modification possibilities, nanotechnology has great potential for applications and may be helpful not only in anti-influenza but also in the general antiviral approaches.
Collapse
Affiliation(s)
- Klaudia Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
- NanoBioMedical Centre, Adam Mickiewicz University, 61-704 Poznan, Poland
| | - Barbara Szutkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| |
Collapse
|
14
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
15
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
16
|
Danilevich VN, Kozlov SA, Shevchuk TV, Oleinikov VA, Sizova SV, Khodarovich YM, Mulyukin AL. Ribonucleic acid (RNA) condensation by thermal cycling with metal cations: yield of nanoparticles and their applicability for transfection. J Biomol Struct Dyn 2019; 38:3959-3971. [PMID: 31543001 DOI: 10.1080/07391102.2019.1671228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To the present, different efficient but expensive, multistage, and time-consuming technologies have been developed to deliver ribonucleic acids (RNA) into eukaryotic cells. Here, we report a simple and feasible solution to design RNA nanocarriers based on nucleic acid condensation by bi- and trivalent metal ions during thermal cycling. Efficient RNA conversion to nanoparticles with small size (10-50 nm) suitable for transfection was achieved using cations Ni2+, Co2+ or Cu2+ alone or in combination with Ca2+ at the specially selected concentrations (2.0 mM-3.5 mM), low ionic strength, and narrow pH range (8.0-8.5). Other ions - Mn2+, Zn2+, Tb3+, or Gd3+ - caused RNA-cleaving effect that was abolished in the presence of Ni2+, Co2+, Zn2+, or Cu2+. Naked RNA-metal ion nanoparticles were extremely unstable in phosphate buffer and sensitive to serum ribonucleases (RNases), and this problem was solved by treatment with polyarginines-16 and 8. Polyarginine-stabilized nanoparticles, containing malachite green (MG) aptamer RNA and metal cations, crossed the cell membrane, dissociated in the cytoplasm, and preserved the functionality of transported RNA, as judged from efficient transfection of human embryonic kidney 293 cells. The technology, involving RNA condensation by metal cations, can be used as a cheap alternative to produce nanoscale carriers to deliver various RNAs into cells in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vasily N Danilevich
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Taras V Shevchuk
- Branch of the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Russia
| | - Vladimir A Oleinikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Svetlana V Sizova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yuriy M Khodarovich
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Andrey L Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:196-220. [PMID: 30904587 PMCID: PMC7106268 DOI: 10.1016/j.nano.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Santosh Malik
- Departmentof Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Sabuj Sahoo
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| |
Collapse
|
18
|
Levina AS, Repkova MN, Shikina NV, Ismagilov ZR, Yashnik SA, Semenov DV, Savinovskaya YI, Mazurkova NA, Pyshnaya IA, Zarytova VF. Non-agglomerated silicon-organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2516-2525. [PMID: 30345214 PMCID: PMC6176811 DOI: 10.3762/bjnano.9.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The development of efficient and convenient systems for the delivery of nucleic-acid-based drugs into cells is an urgent task. А promising approach is the use of various nanoparticles. Silica nanoparticles can be used as vehicles to deliver nucleic acid fragments into cells. In this work, we developed a method for the synthesis of silicon-organic (Si-NH2) non-agglomerated nanoparticles by the hydrolysis of aminopropyltriethoxysilane (APTES). The resulting product forms a clear solution containing nanoparticles in the form of low molecular weight polymer chains with [─Si(OH)(C3H6NH2)O─] monomer units. Oligonucleotides (ODN) were conjugated to the prepared Si-NH2 nanoparticles using the electrostatic interaction between positively charged amino groups of nanoparticles and negatively charged internucleotide phosphate groups in oligonucleotides. The Si-NH2 nanoparticles and Si-NH2·ODN nanocomplexes were characterized by transmission electron microscopy, atomic force microscopy and IR and electron spectroscopy. The size and zeta potential values of the prepared nanoparticles and nanocomplexes were evaluated. Oligonucleotides in Si-NH2·ODN complexes retain their ability to form complementary duplexes. The Si-NH2 Flu nanoparticles and Si-NH2·ODNFlu nanocomplexes were shown by fluorescence microscopy to penetrate into human cells. The Si-NH2 Flu nanoparticles predominantly accumulated in the cytoplasm whereas ODNFlu complexes were predominantly detected in the cellular nuclei. The Si-NH2·ODN nanocomplexes demonstrated a high antisense activity against the influenza A virus in a cell culture at a concentration that was lower than their 50% toxic concentration by three orders of magnitude.
Collapse
Affiliation(s)
- Asya S Levina
- Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Marina N Repkova
- Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Nadezhda V Shikina
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 5, Novosibirsk, 630090, Russia
| | - Zinfer R Ismagilov
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 5, Novosibirsk, 630090, Russia
| | - Svetlana A Yashnik
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 5, Novosibirsk, 630090, Russia
| | - Dmitrii V Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Yulia I Savinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Natalia A Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Valentina F Zarytova
- Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| |
Collapse
|
19
|
Levina AS, Repkova MN, Chelobanov BP, Bessudnova EV, Mazurkova NA, Stetsenko DA, Zarytova VF. Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus. Mol Biol 2017. [DOI: 10.1134/s0026893317040136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Repkova MN, Levina AS, Seryapina AA, Shikina NV, Bessudnova EV, Zarytova VF, Markel AL. Toward Gene Therapy of Hypertension: Experimental Study on Hypertensive ISIAH Rats. BIOCHEMISTRY (MOSCOW) 2017; 82:454-457. [PMID: 28371602 DOI: 10.1134/s000629791704006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TiO2-based nanocomposites were prepared to deliver oligonucleotides into cells. The nanocomposites were designed by the immobilization of polylysine-containing oligonucleotides on TiO2-nanoparticles (TiO2·PL-DNA). We showed for the first time the possibility of using the proposed nanocomposites for treatment of hypertensive disease by introducing them into hypertensive ISIAH rats developed as a model of stress-sensitive arterial hypertension. The mRNA of the gene encoding angiotensin I-converting enzyme (ACE1) involved in the synthesis of angiotensin II was chosen as a target. Administration (intraperitoneal injection and inhalation) of the nanocomposite showed a significant (by 20-30 mm Hg) decrease in systolic blood pressure when the nanocomposite contained the ACE1 gene-targeted oligonucleotide. When using the oligonucleotide with a random sequence, no effect was observed. Further development and improvement of the inhalation nanocomposite drug delivery to systemic hypertensive disease treatment promises new possibilities for clinical practice.
Collapse
Affiliation(s)
- M N Repkova
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|