1
|
Gnecco E, Perkin S, Vanossi A, Meyer E. Nanotribology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2330-2331. [PMID: 30202701 PMCID: PMC6122135 DOI: 10.3762/bjnano.9.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Enrico Gnecco
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Susan Perkin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Andrea Vanossi
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Vanossi A, Dietzel D, Schirmeisen A, Meyer E, Pawlak R, Glatzel T, Kisiel M, Kawai S, Manini N. Recent highlights in nanoscale and mesoscale friction. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1995-2014. [PMID: 30116691 PMCID: PMC6071713 DOI: 10.3762/bjnano.9.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/27/2018] [Indexed: 05/31/2023]
Abstract
Friction is the oldest branch of non-equilibrium condensed matter physics and, at the same time, the least established at the fundamental level. A full understanding and control of friction is increasingly recognized to involve all relevant size and time scales. We review here some recent advances on the research focusing of nano- and mesoscale tribology phenomena. These advances are currently pursued in a multifaceted approach starting from the fundamental atomic-scale friction and mechanical control of specific single-asperity combinations, e.g., nanoclusters on layered materials, then scaling up to the meso/microscale of extended, occasionally lubricated, interfaces and driven trapped optical systems, and eventually up to the macroscale. Currently, this "hot" research field is leading to new technological advances in the area of engineering and materials science.
Collapse
Affiliation(s)
- Andrea Vanossi
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Dirk Dietzel
- Institute of Applied Physics, University of Giessen, 33492 Giessen, Germany
| | - Andre Schirmeisen
- Institute of Applied Physics, University of Giessen, 33492 Giessen, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Marcin Kisiel
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Shigeki Kawai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|