1
|
Peña Román RJ, Auad Y, Grasso L, Padilha LA, Alvarez F, Barcelos ID, Kociak M, Zagonel LF. Design and implementation of a device based on an off-axis parabolic mirror to perform luminescence experiments in a scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043704. [PMID: 35489916 DOI: 10.1063/5.0078423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary techniques. Considering the Étendue conservation and using an off-axis parabolic mirror, it is possible to design a light collection and injection system that displays 72% of collection efficiency (considering the hemisphere above the sample surface) while maintaining high spectral resolution and minimizing signal loss. The performance of the STM is tested by atomically resolved images and scanning tunneling spectroscopy results on standard sample surfaces. The capabilities of our system are demonstrated by performing STM-LE on metallic surfaces and two-dimensional semiconducting samples, observing both plasmonic and excitonic emissions. In addition, we carried out in situ PL measurements on semiconducting monolayers and quantum dots and in situ Raman on graphite and hexagonal boron nitride (h-BN) samples. Additionally, STM-CL and PL were obtained on monolayer h-BN gathering luminescence spectra that are typically associated with intragap states related to carbon defects. The results show that the flexible and efficient light injection and collection device based on an off-axis parabolic mirror is a powerful tool to study several types of nanostructures with multiple spectroscopic techniques in correlation with their morphology at the atomic scale and electronic structure.
Collapse
Affiliation(s)
- Ricardo Javier Peña Román
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Yves Auad
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Lucas Grasso
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Lazaro A Padilha
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Fernando Alvarez
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Ingrid David Barcelos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Luiz Fernando Zagonel
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| |
Collapse
|
2
|
Foti A, Venkatesan S, Lebental B, Zucchi G, Ossikovski R. Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030451. [PMID: 35159798 PMCID: PMC8840094 DOI: 10.3390/nano12030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines the high specificity and sensitivity of plasmon-enhanced Raman spectroscopy with the high spatial resolution of scanning probe microscopy. TERS has gained a lot of attention from many nanoscience fields, since this technique can provide chemical and structural information of surfaces and interfaces with nanometric spatial resolution. Multiwalled carbon nanotubes (MWCNTs) are very versatile nanostructures that can be dispersed in organic solvents or polymeric matrices, giving rise to new nanocomposite materials, showing improved mechanical, electrical and thermal properties. Moreover, MWCNTs can be easily functionalized with polymers in order to be employed as specific chemical sensors. In this context, TERS is strategic, since it can provide useful information on the cooperation of the two components at the nanoscale for the optimization of the macroscopic properties of the hybrid material. Nevertheless, efficient TERS characterization relies on the geometrical features and material composition of the plasmonic tip used. In this work, after comparing the TERS performance of commercial Ag coated nanotips and home-made bulk Au tips on bare MWCNTs, we show how TERS can be exploited for characterizing MWCNTs mixed with conjugated fluorene copolymers, thus contributing to the understanding of the polymer/CNT interaction process at the local scale.
Collapse
Affiliation(s)
- Antonino Foti
- CNR—IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| | - Suriya Venkatesan
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Bérengère Lebental
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- COSYS-LISIS, Université Gustave Eiffel, IFSTTAR, 77454 Marne-la-Vallée, France
| | - Gaël Zucchi
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Razvigor Ossikovski
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| |
Collapse
|
3
|
Yan H, Alayoglu S, Wu W, Zhang Y, Weitz E, Stair PC, Notestein JM. Identifying Boron Active Sites for the Oxidative Dehydrogenation of Propane. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Yan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiqiang Wu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Yongbo Zhang
- Integrated Molecular Structure Education and Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric Weitz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter C. Stair
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Fleischer M, Zhang D, Meixner AJ. Optically and electrically driven nanoantennas. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1542-1545. [PMID: 33094087 PMCID: PMC7554664 DOI: 10.3762/bjnano.11.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 05/13/2023]
Affiliation(s)
- Monika Fleischer
- Institute for Applied Physics and Center LISA⁺, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry and Center LISA⁺, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry and Center LISA⁺, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Amendola V. Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1016-1023. [PMID: 31165028 PMCID: PMC6541332 DOI: 10.3762/bjnano.10.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/03/2019] [Indexed: 05/26/2023]
Abstract
The use of plasmonic nanotags based on the surface-enhanced Raman scattering (SERS) effect is highly promising for several applications in analytical chemistry, biotechnological assays and nanomedicine. To this end, a crucial parameter is the minimum number of SERS tags that allows for the collection of intense Raman signals under real operating conditions. Here, SERS Au nanotags (AuNTs) based on clustered gold nanoparticles are deposited on a substrate and analyzed in the same region using Raman spectroscopy and transmission electron microscopy. In this way, the Raman spectra and the surface density of the SERS tags are correlated directly, showing that 1 tag/µm2 is enough to generate an intense signal above the noise level at 633 nm with an excitation power of only 0.65 mW and an acquisition time of just 1 s with a 50× objective. The AuNT density can be even lower than 1 tag/µm2 when the acquisition time is extended to 10 s, but must be increased to 3 tags/µm2 when a 20× objective is employed under the same excitation conditions. In addition, in order to observe a linear response, it was found that 10 SERS AuNTs inside the probed area are required. These findings indicate that a better signal-to-noise ratio requires high-magnification optics, while linearity versus tag number can be improved by using low-magnification optics or a high tag density. In general the suitability of plasmonic SERS labels for ultrasensitive analytical and biomedical applications is evident.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|