1
|
Rashed AO, Huynh C, Merenda A, Rodriguez-Andres J, Kong L, Kondo T, Razal JM, Dumée LF. Dry-spun carbon nanotube ultrafiltration membranes tailored by anti-viral metal oxide coatings for human coronavirus 229E capture in water. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110176. [PMID: 37234558 PMCID: PMC10201849 DOI: 10.1016/j.jece.2023.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to ∼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to ∼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.
Collapse
Affiliation(s)
- Ahmed O Rashed
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Chi Huynh
- LINTEC OF AMERICA, INC. Nano-Science and Technology Center, 2900 E. Plano Pkwy. Suite 100, Plano, TX 75074, United States
| | - Andrea Merenda
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | | | - Lingxue Kong
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Takeshi Kondo
- LINTEC OF AMERICA, INC. Nano-Science and Technology Center, 2900 E. Plano Pkwy. Suite 100, Plano, TX 75074, United States
| | - Joselito M Razal
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
3
|
El Haber G, Noel L, Lin CF, Gree S, Vidal L, Zan HW, Hobeika N, Lhost O, Trolez Y, Soppera O. Near-Infrared Laser Direct Writing of Conductive Patterns on the Surface of Carbon Nanotube Polymer Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49279-49287. [PMID: 34613692 DOI: 10.1021/acsami.1c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) laser annealing is used to write conductive patterns on the surface of polypropylene/multi-walled carbon nanotube nanocomposite (PP/MWCNT) plates. Before irradiation, the surface of the nanocomposite is not conductive due to the partial alignment of the MWCNT, which occurs during injection molding. We observe a significant decrease in the surface sheet resistance using NIR laser irradiation, which we explain by a randomization of the orientation of MWCNTs in the PP matrix melt by NIR laser irradiation. After only 5 s of irradiation, the sheet resistance of PP/MWCNTs, annealed with a laser at a power density of 7 W/cm2, decreases by more than 4 decades from ∼100 MΩ/sq to ∼1 kΩ/sq. Polarized Raman, TEM, and SEM are used to investigate the changes in the sheet resistance and confirm the physico-chemical processes involved. This allows direct writing of conductive patterns using a NIR laser on the surface of nanocomposite polymer substrates, with the advantages of a fast, easy, and low-energy consumption process.
Collapse
Affiliation(s)
- Gerges El Haber
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
- Lebanese University, Faculty of Engineering Branch 2, Roumieh, Metn, Mount-Lebanon, Beirut 90656, Lebanon
| | - Laurent Noel
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Ching-Fu Lin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Simon Gree
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Hsiao-Wen Zan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nelly Hobeika
- Lebanese University, Faculty of Engineering Branch 2, Roumieh, Metn, Mount-Lebanon, Beirut 90656, Lebanon
| | | | - Yves Trolez
- TotalEnergies OneTech Belgium, Feluy 7181, Belgium
| | - Olivier Soppera
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| |
Collapse
|
4
|
Kolanowska A, Herman AP, Jędrysiak RG, Boncel S. Carbon nanotube materials for electrocardiography. RSC Adv 2021; 11:3020-3042. [PMID: 35424207 PMCID: PMC8693996 DOI: 10.1039/d0ra08679g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Carbon nanotubes (CNTs) as 1D nanomaterials of excellent physicochemical characteristics bring hope to compete and eventually conquer traditional solutions in electrocardiography - one of the most powerful and non-invasive diagnostic tools in cardiac disorders. Our review tracks (from 2008) the development of CNTs as critical components in the systems where CNTs serve mainly as electroconductive fillers hence enable recording electrocardiographs (ECG). The characteristics of the CNT-based ECG systems - mainly to-skin electrodes and in a few cases wiring - covers their electrical and mechanical performance (adhesivity, flexibility, elasticity) and qualitative biocompatibility. By comprehensive analysis of the state-of-art in this field, we intend to indicate the most important challenges for the CNT (and other) materials to be applied in scale-up solution for electrocardiography in the near future.
Collapse
Affiliation(s)
- Anna Kolanowska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| | - Artur P Herman
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał G Jędrysiak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group Bolesława Krzywoustego 4 44-100 Gliwice Poland +48 32 237 20 94 +48 32 237 12 72
| |
Collapse
|
5
|
Basha SI, Aziz A, Maslehuddin M, Ahmad S, Hakeem AS, Rahman MM. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material – A Review. CHEM REC 2020; 20:1568-1595. [DOI: 10.1002/tcr.202000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Shaik Inayath Basha
- Department of Civil and Environmental Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum and Minerals (KFUPM) KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - M. Maslehuddin
- Center for Engineering Research King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Shamsad Ahmad
- Department of Civil and Environmental Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abbas Saeed Hakeem
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum and Minerals (KFUPM) KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - Mohammad Mizanur Rahman
- Center of Research Excellence in Corrosion King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
6
|
Papageorgiou DG, Li Z, Liu M, Kinloch IA, Young RJ. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. NANOSCALE 2020; 12:2228-2267. [PMID: 31930259 DOI: 10.1039/c9nr06952f] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer nanocomposites reinforced with carbon-based nanofillers are gaining increasing interest for a number of applications due to their excellent properties. The understanding of the reinforcing mechanisms is, therefore, very important for the maximization of performance. This present review summarizes the current literature status on the mechanical properties of composites reinforced with graphene-related materials (GRMs) and carbon nanotubes (CNTs) and identifies the parameters that clearly affect the mechanical properties of the final materials. It is also shown how Raman spectroscopy can be utilized for the understanding of the stress transfer efficiency from the matrix to the reinforcement and it can even be used to map stress and strain in graphene. Importantly, it is demonstrated clearly that continuum micromechanics that was initially developed for fibre-reinforced composites is still applicable at the nanoscale for both GRMs and CNTs. Finally, current problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Dimitrios G Papageorgiou
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zheling Li
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Mufeng Liu
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ian A Kinloch
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Robert J Young
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Fryń P, Bogdanowicz KA, Krysiak P, Marzec M, Iwan A, Januszko A. Dielectric, Thermal and Mechanical Properties of l,d-Poly(Lactic Acid) Modified by 4'-Pentyl-4-Biphenylcarbonitrile and Single Walled Carbon Nanotube. Polymers (Basel) 2019; 11:E1867. [PMID: 31726773 PMCID: PMC6918421 DOI: 10.3390/polym11111867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 11/18/2022] Open
Abstract
We report here the preparation and thermal, electrical and mechanical characterization of binary and ternary films based on l,d-poly(lactic acid) (l,d-PLA) and 4'-pentyl-4-biphenylcarbonitrile (5CB) and Single Walled Carbon Nanotubes (SWCN) with various weight ratio. The transitions for all investigated hybrid compositions detected by differential scanning calorimetry method were shifted to lower temperatures with increasing the concentration of 5CB in the mixture with polymer. Frequency domain dielectric spectroscopy method and thermal imaging together with polarized optical microscope were used to study electric and structural properties of created hybrid compositions. The best electrical conductivity was observed for hybrid composite l,d-PLA:5CB:SWCN with ratio 10:1:0.5 w/w/w - resistance of 41.0 Ω and thermal response up to 160 °C without causing any damages. Films in crystal form are much more inflexible than in amorphous and can be explain by the cold crystallization occurs at heating while the materials changed their physical state. The value of ε' increases with increasing the 5CB admixture. Moreover, the addition of 5CB to l,d-PLA resulted in increased flexibility of polymeric base films. The best material flexibility and short-term strength were obtained for l,d-PLA sample with 9% 5CB content.
Collapse
Affiliation(s)
- Patryk Fryń
- Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland;
| | | | - Piotr Krysiak
- Military Institute of Engineer Technology, Obornicka 136 Str., 50-961 Wroclaw, Poland; (K.A.B.); (P.K.)
| | - Monika Marzec
- Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland;
| | - Agnieszka Iwan
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland;
| | - Adam Januszko
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland;
| |
Collapse
|
8
|
Díaz E, Puerto I, Sandonis I, Ribeiro S, Lanceros‐Mendez S. Hydrolytic degradation and cytotoxicity of poly(lactic‐
co
‐glycolic acid)/multiwalled carbon nanotubes for bone regeneration. J Appl Polym Sci 2019. [DOI: 10.1002/app.48439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Esperanza Díaz
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
- BCMaterials, Basque Centre for Materials, Applications and NanostructuresUPV/EHU Science Park 48940 Leioa Spain
| | - Igor Puerto
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
| | - Iban Sandonis
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
| | - Sylvie Ribeiro
- Centro/Departamento de FísicaUniversidade do Minho 4710‐057 Braga Portugal
- Centre of Molecular and Environmental Biology (CBMA)Universidade do Minho, Campus de Gualtar 4710‐057 Braga Portugal
| | - Senentxu Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and NanostructuresUPV/EHU Science Park 48940 Leioa Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
9
|
Beigmoradi R, Samimi A, Mohebbi-Kalhori D. Fabrication of polymeric nanofibrous mats with controllable structure and enhanced wetting behavior using one-step electrospinning. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|