1
|
Li J, Duran C, Pogrányi B, Cornish KAS, Cartwright J, Osuna S, Unsworth WP, Grogan G. Divergent Oxidation Reactions of E- and Z-Allylic Primary Alcohols by an Unspecific Peroxygenase. Angew Chem Int Ed Engl 2025; 64:e202422241. [PMID: 39655807 DOI: 10.1002/anie.202422241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Unspecific peroxygenases (UPOs) catalyze the selective oxygenation of organic substrates using only hydrogen peroxide as the external oxidant. The PaDa-I variant of the UPO from Agrocybe aegerita catalyses the oxidation of Z- and E-allylic alcohols with complementary selectivity, giving epoxide and carboxylic acid/aldehyde products respectively. Both reactions can be performed on preparative scale with isolated yields up to 80 %, and the epoxidations proceed with excellent enantioselectivity (>99 % ee). The divergent reactions can also be used to transform E/Z mixtures of allylic alcohols, enabling both product series to be isolated from a single reaction. The utility of the epoxidation method is exemplified in the total synthesis of both enantiomers of the insect pheromone disparlure, including a highly enantioselective gram-scale transformation. These reactions provide further evidence for the potential of UPOs as catalysts for the scalable preparation of important oxygenated intermediates.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, c/ Maria Aurèlia, Capmany 69, 17003, Girona, Spain
| | - Balázs Pogrányi
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Katy A S Cornish
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
- Department of Biology, University of York, Heslington, YO10 5DD, York, U.K
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, YO10 5DD, York, U.K
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, c/ Maria Aurèlia, Capmany 69, 17003, Girona, Spain
- ICREA, Pg. Lluís, Companys 23, 08010, Barcelona, Spain
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| |
Collapse
|
2
|
Zhao M, Tao Z, Wang L, Wang T, Wang C, Li S, Huang S, Wei Y, Jiang T, Li P. Structural modification of (3E)-4,8-dimethyl-1,3,7-nontriene enhances its ability to kill Plutella xylostella insect pests. PEST MANAGEMENT SCIENCE 2023; 79:3280-3289. [PMID: 37085948 DOI: 10.1002/ps.7508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant secondary metabolites and their modified derivatives play an important role in the discovery and development of novel insecticides. The natural plant product (3E)-4,8-dimethyl-1,3,7-nontriene (DMNT) has been proven to be able to effectively repel and kill the lepidopteran insect pest Plutella xylostella. RESULTS In this study, four oxygenated derivatives of DMNT were synthesized by allylic hydroxylation and subsequent etherification or esterification. Bioassays on P. xylostella larvae showed that the compounds DMNT-OCH3 (2), DMNT-OCy (3) and DMNT-OAc (4) were more toxic to the larvae than DMNT alone. The most pronounced effect was observed for compound 2, which showed a 22.23% increase in lethality at a concentration of 0.25 μm. Moreover, the peritrophic matrix (PM) barrier in the insect midgut was more severely damaged by compounds 2, 3 and 4 than by DMNT. The median lethal concentration (LC50 , 48 h) of compounds 2, 3 and 4 on P. xylostella was determined to be 0.98, 1.13 and 1.11 mg mL-1 , respectively, which is much lower than the commercial insecticides eucalyptol (2.89 mg mL-1 ) and thymol (2.45 mg mL-1 ). CONCLUSION These results suggested that oxygenated DMNT derivatives offer a significantly improved killing effect over DMNT on P. xylostella. This work has provided a basis for further design, structural modification and development of DMNT as botanical insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuming Wei
- The School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
4
|
Cannazza P, Rabuffetti M, Donzella S, De Vitis V, Contente ML, de Oliveira MDCF, de Mattos MC, Barbosa FG, de Souza Oliveira RP, Pinto A, Molinari F, Romano D. Whole cells of recombinant CYP153A6-E. coli as biocatalyst for regioselective hydroxylation of monoterpenes. AMB Express 2022; 12:48. [PMID: 35478304 PMCID: PMC9046528 DOI: 10.1186/s13568-022-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Optimized recombinant whole cells of E. coli bearing CYP153A6 were employed for catalyzing the hydroxylation of different monoterpene derivatives. In most cases, high selectivity was observed with exclusive hydroxylation of the allylic methyl group bound to the aliphatic ring. In the case of (R)- and (S)-carvone, hydroxylation occurred also on the other allylic methyl group, although to a lesser extent. Biotransformations carried out in fed-batch mode on (S)-limonene and α-terpineol showed that recombinant whole cells retained activity for at least 24 h, allowing for the recovery of 3.25 mg mL−1 of (S)-perillyl alcohol and 5.45 mg mL−1 of 7-hydroxy-α-terpineol, respectively. Different monoterpenes can be regioselectively hydroxylated by CYP153A6 monooxygenase The biotransformation with whole cells is complementary to chemical oxyfunctionalization Fed-batch biotransformations have been applied for preparative purposes
Collapse
|
5
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
6
|
Dippe M, Herrmann S, Pecher P, Funke E, Pietzsch M, Wessjohann L. Engineered bacterial flavin-dependent monooxygenases for the regiospecific hydroxylation of polycyclic phenols. Chembiochem 2022; 23:e202100480. [PMID: 34979058 PMCID: PMC9303722 DOI: 10.1002/cbic.202100480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Indexed: 11/06/2022]
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational re-design to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged by residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of non-aromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of by-products.
Collapse
Affiliation(s)
- Martin Dippe
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle/Saale, GERMANY
| | - Susann Herrmann
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle, GERMANY
| | - Pascal Pecher
- Leibniz Institute of Plant Biochemistry: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Evelyn Funke
- Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Markus Pietzsch
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, D-06120, Halle, GERMANY
| | - Ludger Wessjohann
- Leibniz-Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, 06120, Halle Saale, GERMANY
| |
Collapse
|
7
|
Xun W, Xu B. Synthetic Approaches of Aplykurodinone‐1: A Minireview. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wen Xun
- Zhaoqing University School of Food and Pharmaceutical Engineering Zhaoqing Avenue 526061 Zhaoqing CHINA
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health Chemistry CHINA
| |
Collapse
|
8
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
9
|
Reiss GJ, Urlacher VB, Luelf UJ. Enzyme-mediated synthesis and crystal structure of (2R,4S)-hydroxyketamine, C13H16ClNO2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractC13H16ClNO2, monoclinic, P21 (no. 4), a = 7.4945(7) Å, b = 7.2336(6) Å, c = 11.5401(10) Å, β = 92.555(2)°, V = 624.99(10) Å3, Z = 2, Rgt(F) = 0.0415, wRref(F2) = 0.0947, T = 291 K.
Collapse
Affiliation(s)
- Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Vlada B. Urlacher
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - U. Joost Luelf
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Bokel A, Rühlmann A, Hutter MC, Urlacher VB. Enzyme-Mediated Two-Step Regio- and Stereoselective Synthesis of Potential Rapid-Acting Antidepressant (2S,6S)-Hydroxynorketamine. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ansgar Bokel
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ansgar Rühlmann
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael C. Hutter
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbruecken, Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Peng Y, Sun Y, Wang B, Zhou Y, Huang S, Wang X. Formal synthesis of (±)-aplykurodinone-1 through an intramolecular Michael addition. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
An operationally simple protocol for the conversion of geranyl acetate to 8-hydroxygeraniol is reported. The convenient two-step procedure relies on an efficient, chemo- and regioselective SeO2-promoted oxidation, followed by straightforward deacetylation. This facile means to prepare 8-hydroxygeraniol is expected to enable biosynthetic studies pertaining to thousands of monoterpene indole alkaloids.
Collapse
Affiliation(s)
- Francesca M Ippoliti
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Joyann S Barber
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Yi Tang
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
13
|
Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, Chu A, Garg NK, Tang Y. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab Eng 2017; 44:117-125. [PMID: 28939278 DOI: 10.1016/j.ymben.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous 'ene'-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
Collapse
Affiliation(s)
- John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joyann S Barber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joe Horecka
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Angela Chu
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
14
|
Bakkes PJ, Riehm JL, Sagadin T, Rühlmann A, Schubert P, Biemann S, Girhard M, Hutter MC, Bernhardt R, Urlacher VB. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci Rep 2017; 7:9570. [PMID: 28852040 PMCID: PMC5575160 DOI: 10.1038/s41598-017-10075-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Most bacterial cytochrome P450 monooxygenases (P450s or CYPs) require two redox partner proteins for activity. To reduce complexity of the redox chain, the Bacillus subtilis flavodoxin YkuN (Y) was fused to the Escherichia coli flavodoxin reductase Fpr (R), and activity was tuned by placing flexible (GGGGS)n or rigid ([E/L]PPPP)n linkers (n = 1–5) in between. P-linker constructs typically outperformed their G-linker counterparts, with superior performance of YR-P5, which carries linker ([E/L]PPPP)5. Molecular dynamics simulations demonstrated that ([E/L]PPPP)n linkers are intrinsically rigid, whereas (GGGGS)n linkers are highly flexible and biochemical experiments suggest a higher degree of separation between the fusion partners in case of long rigid P-linkers. The catalytic properties of the individual redox partners were best preserved in the YR-P5 construct. In comparison to the separate redox partners, YR-P5 exhibited attenuated rates of NADPH oxidation and heme iron (III) reduction, while coupling efficiency was improved (28% vs. 49% coupling with B. subtilis CYP109B1, and 44% vs. 50% with Thermobifida fusca CYP154E1). In addition, YR-P5 supported monooxygenase activity of the CYP106A2 from Bacillus megaterium and bovine CYP21A2. The versatile YR-P5 may serve as a non-physiological electron transfer system for exploitation of the catalytic potential of other P450s.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Jan L Riehm
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Tanja Sagadin
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Ansgar Rühlmann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Peter Schubert
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Stefan Biemann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Schiavini P, Cheong KJ, Moitessier N, Auclair K. Active Site Crowding of Cytochrome P450 3A4 as a Strategy To Alter Its Selectivity. Chembiochem 2016; 18:248-252. [PMID: 27897366 DOI: 10.1002/cbic.201600546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Paolo Schiavini
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Kin J. Cheong
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
16
|
Rinkel J, Rabe P, Zur Horst L, Dickschat JS. A detailed view on 1,8-cineol biosynthesis by Streptomyces clavuligerus. Beilstein J Org Chem 2016; 12:2317-2324. [PMID: 28144299 PMCID: PMC5238540 DOI: 10.3762/bjoc.12.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/28/2016] [Indexed: 12/29/2022] Open
Abstract
The stereochemical course of the cyclisation reaction catalysed by the bacterial 1,8-cineol synthase from Streptomyces clavuligerus was investigated using stereospecifically deuterated substrates. In contrast to the well investigated plant enzyme from Salvia officinalis, the reaction proceeds via (S)-linalyl diphosphate and the (S)-terpinyl cation, while the final cyclisation reaction is in both cases a syn addition, as could be shown by incubation of (2-13C)geranyl diphosphate in deuterium oxide.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Laura Zur Horst
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
17
|
Ilie A, Agudo R, Roiban GD, Reetz MT. P450-catalyzed regio- and stereoselective oxidative hydroxylation of disubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Roiban GD, Reetz MT. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem Commun (Camb) 2015; 51:2208-24. [DOI: 10.1039/c4cc09218j] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 enzymes (CYPs) have been used for more than six decades as catalysts for the CH-activating oxidative hydroxylation of organic compounds with formation of added-value products.
Collapse
Affiliation(s)
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Max-Planck-Institut für Kohlenforschung
| |
Collapse
|